Pulsed Field Ablation:

REAL REVOLUTION IN ELECTROPHYSIOLOGY

Petr Neuzil, MD,PhD, FESC Professor of Medicine Cardiology department Na Homolce Hospital, Prague, Czechia

petr.neuzil@gmail.com

Disclosures

Scientific grant / Consultant :

Farapulse/Boston Scientific, Affera / Medtronic, Biosence – Webster, Kardium, Acutus, BTL, Adagio, Abbott,

Thermal Ablation (Heat or Cold Energy) Tissue-Indiscriminate Ablation

Thermal Ablation

Balance Between Safety & Efficacy

RA Bpin: 0 Tilt-90 LV RSPV LA RIPV LIPV ESO DA MRI Image of the LA and Esophagus

VY.Reddy, P.Neuzil, J.Koruth, et al, JACC 74:315–26 (2019)

Pulsed Field Ablation (PFA) Mechanism

PFA is <u>non-thermal</u>, & induces necrosis through irreversible electroporation.

Pulsed Field Ablation (PFA) Tissue Selectivity

Optimized PFA has a significant degree of <u>tissue-selectivity</u>. *PFA can target myocardium while* <u>*largely*</u> *sparing surrounding tissues*.

Other tissue types are more resistant to PFA and remain uninjured despite exposure to the field

[1] Reddy VY et al. J Am Coll Cardiol. 2019;74(3):315-26. [2] Reddy et al. JACC: Clinical Electrophysiology 7.5 (2021): 614-627.

Pulsed Field Ablation (PFA) First-in-Human Acute Clinical Data (HRS-2018)

- 7 patients: epicardial system (surgical approach, box lesion)
- 15 patients: endocardial system (over-the-wire PVI catheter)
 > 100% acute isolation (endo), no acute SAEs

Epicardial Cohort (n = 7)		Endocardial Cohort (n = 15)
N/A	Procedure time	67.0 ± 10.5
N/A	Mapping time	41.4 ± 9.3
$\textbf{50.7} \pm \textbf{19.5}$	Catheter time	$\textbf{26.0} \pm \textbf{4.3}$
25.0 ± 17.5	Ablation time	19.0 ± 2.5
$\textbf{6.6} \pm \textbf{3.8}$	Fluoroscopy time	12.3 ± 4.0
6/7 (86)	Isolation success	15/15 (100)

VY.Reddy, J.Koruth, P.Jais et al, JACC EP 4:987-995 (2018)

Biphasic PFA FIH Clinical Experience

Improvements with biphasic delivery

• No general anesthesia or paralytic (except 1st patient)

Ablation Delivery Characteristics PFA Waveform Evolution

- Waveform is structured as a hierarchical set of msec bipolar pulses
- Pulse train is delivered across electrodes over 4 10 heartbeats
- No external patch is employed

	Monophasic		Biphasic-2	Biphasic-3	
Waveform polarity	Monophasic	Biphasic	Biphasic	Biphasic	Biphasic
Waveform composition	Protocol A	Protocol B	Protocol C	Protocol D	Protocol D
No. of heartbeats over which pulses delivered	4	10	8	5	5
Voltage amplitude	900 V	1800 V	1800 V	2000 V	1800 – 2000 V
Catheter pose	Flower	Flower	Flower and Basket	Flower and Basket	Flower and/or Basket

IMPULSE & PEFCAT Patient Flow

IMPULSE & PEFCAT 3-Month Remapping Outcomes

Durable PV Isolation Data from Protocol-Driven Remap Studies

Patients with all PVs Durably Isolated

Pulsed Field Ablation Catheter Technology for AF (In Clinical Trials)

Pentaspline PFA Catheter Procedure Methodology

- Equipment (Farapulse-Boston Scientific, Inc)
 - PFA Catheter: Farawave
 - (0.035 Amplatz extra stiff straight guidewire)
 - 13-Fr Deflectable Sheath: Faradrive
 - Generator: Farastar
- Lesion sets (standard protocol per training):
 - <u>PVI</u>: 2 x basket → rotate → 2 x basket → : 2 x flower → rotate → 2 x flower
 - <u>LAPW</u> (all flower pose): 2 x at each location
- Esophageal "management": nothing
 - No temp monitoring / eso deviation / eso cooling/etc

Pentaspline PFA Catheter FIH Clinical Trial Data: Promising (*But <150 PFA pts*)

CENTRAL ILLUSTRATION PFA for Paroxysmal AF

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY

JACC: CHNICAL FLECTROPHYSIOLOGY

PUBLISHED BY ELSEVIER

© 2019 THE AUTHORS, PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY-NC-ND LICENSE (http://creativecommons.org/licenses/by-nc-nd/4.0/).

JACC: CLINICAL ELECTROPHYSIOLOGY

COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY-NC-ND LICENSE (http://creativecommons.org/licenses/by-nc-nd/4.0/).

IS Pulsed Field Ablation of Paro Vive Atrial Fibrillation Huł

1-Year Outcomes of IMPULSE, PEFCAT, an

© 2020 THE AUTHORS, PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY-NC-ND LICENSE (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Pulsed Field Ablation in Patien Persistent Atrial Fibrillation

Vivek Y. Reddy, MD,^{a,b} Ante Anic, MD,^c Jacob Koruth, MD,^b Jan Petru, MD,^a Moritoshi Funasako, MD,^a Kentaro Minami, MD,^a Toni Breskovic, MD, PhD,^c Ivan Sikiric, MD,^c Srinivas R. Dukkipati, MD,^b Iwanari Kawamura, MD,^b Petr Neuzil, MD, PHD^a

PFA Safety in the "Real World" MANIFEST-PF Survey Outcomes

CLINICAL RESEARCH

Multi-national survey on the methods, efficacy, and safety on the post-approval clinical use of pulsed field ablation (MANIFEST-PF)

Emmanuel Ekanem (1, Vivek Y. Reddy^{1,2}, Boris Schmidt³, Tobias Reichlin (1, Kars Neven (5^{5,6}, Andreas Metzner (7, Jim Hansen⁸, Yuri Blaauw⁹, Philippe Maury^{10,11}, Thomas Arentz¹², Philipp Sommer¹³, Ante Anic (7, Frederic Anselme¹⁵, Serge Boveda (1, T, Tom Deneke¹⁸, Stephan Willems (1, Frederic Anselme¹⁵, Serge Boveda (1, T, Tom Deneke¹⁸, Stephan Willems (1, Pepijn van der Voort²⁰, Roland Tilz^{21,22,23}, Moritoshi Funasako^{2,24}, Daniel Scherr²⁵, Reza Wakili²⁶, Daniel Steven (1, Z, Josef Kautzner (2, Josef Kautzner (1, Z, Josef Kautzner (1

E.Ekanem, VY.Reddy, B.Schmidt, et al, Europace. 2022 Sep 1;24(8):1256-1266

PFA Safety in the "Real World" MANIFEST-PF Survey Outcomes

E.Ekanem, VY.Reddy, B.Schmidt, et al, Europace. 2022 Sep 1;24(8):1256-1266

MANIFEST-PF Registry Design

- Retrospective study that included all commercial PFA cases prior to Dec 2021
- Deidentified *patient-level* data was analyzed
- <u>Primary Efficacy Endpoint</u>:
 - Freedom from atrial arrhythmia (AF/AFL/AT) recurrence
 ≥30 seconds (post 3-mo blanking period)
 - Follow-up per usual center practice
- Safety Data
 - Patient-Level Data
 - Also collected any potential Late adverse events
- Included Patient Population
 - All consecutive patients undergoing PFA (Post-CE Mark)
 - Only First-time AF ablation procedures
- Approved by the EC at Homolka Hospital, Prague

MANIFEST-PF: Results

Baseline Patient Characteristics-1

	Pts w/ Available Data	Value (%)
Age, years (mean±SD)	1,334 (100%)	63.4±11.5
Female (%)	1,334 (100%)	435 (33%)
Body mass index (kg/m2) (mean±SD)	1,334 (100%)	28.1±4.9
AF duration, (months) (median, IQR)	1,170 (88%)	24 (8.5 – 51.8)
АҒ Туре		
Paroxysmal		864 (65%)
Persistent	1,334 (100%)	419 (31%)
Long standing persistent		51 (4%)
Past Medical History		
CHA ₂ DS ₂ -VaSc	1,334 (100%)	2.1±1.5
Atrial flutter (%)	1,334 (100%)	175 (13%)
Coronary artery disease	1,334 (100%)	185 (14%)
Diabetes	1,334 (100%)	172 (13%)
Hypertension	1,334 (100%)	796 (60%)
Heart failure	1,334 (100%)	188 (14%)
Alcohol abuse	1,334 (100%)	15 (1%)
Sleep apnea	1,334 (100%)	105 (8%)
Stroke/TIA	1,334 (100%)	87 (7%)
COPD	1,334 (100%)	54 (4%)

MANIFEST-PF: Results Baseline Patient Characteristics-2

	Pts. w/ Available Data	Value (%)
Echocardiographic parameters		
LVEF (%)	1,259 (94%)	57±10
LA diameter, mm (mean±SD)	1,057 (79%)	42±8
Antiarrhythmic Medications		
Class I AADs (%)	1,334 (100%)	343 (26%)
Class II AADs (%)	1,334 (100%)	696 (52%)
Class III AADs (%)	1,334 (100%)	279 (21%)
Class IV AADs (%)	1,334 (100%)	68 (5%)
Oral Anticoagulants		
Vitamin K antagonist (%)	1,334 (100%)	82 (6%)
NOAC (%)	1,334 (100%)	1,173 (88%)
Other (%)	1,334 (100%)	5 (0.4%)
None (%)	1,334 (100%)	74 (6%)

MANIFEST-PF: Results

Procedural Characteristics -1

	Pts. w/ Available Data	Value (%)
Patient Management		
Deep Sedation (%)	1,334 (100%)	990 (74%)
Endotracheal intubation (%)	1,334 (100%)	344 (26%)
Electroanatomical mapping (%)	1,334 (100%)	478 (36%)
Intracardiac echo (%)	1,334 (100%)	429 (32%)
Ablation Lesion Sets		
Pulmonary vein isolation (%)	1,334 (100%)	1334 (100%)
Acute success (%)	1,334 (100%)	1321 (99%)
Additional non-PV ablation (%)	1,334 (100%)	364 (27%)
LA posterior wall isolation (%)	1,334 (100%)	191 (14%)
CTI ablation (%)	1,334 (100%)	83 (6%)
Mitral line (%)	1,334 (100%)	30 (2%)
Roof line (%)	1,334 (100%)	13 (1%)
Other ablation (%)	1,334 (100%)	47 (4%)

MANIFEST-PF: Results

Procedural Characteristics-2

	Pts. w/	Value (%)
	Available Data	
Type of Energy used to perform additional ablation		
Pulse-field energy	364 (100%)	306 (84%)
Radiofrequency energy	364 (100%)	58 (16%)
Fluoroscopy time (min) (mean±SD)	1,291 (97%)	16.6±10.6
Total procedure time (min) (mean±SD)	1,324 (99%)	79.0±44.2
Same day discharge (%)	1,334 (100%)	109 (8%)
AADs on discharge		408 (34%)
Class I	1,184 (89%)	225 (19%)
Class III		183 (15%)
Class I/III AADs at 3 months	1,241 (93%)	271 (22%)
No. of patients without 3-months of follow up	1,334 (100%)	165 (12%)

MANIFEST-PF: Results Efficacy Outcomes

	N=1,334
Follow up duration, days (median, IQR)	188 (129 – 242)
No. of follow-up Holter's (median, IQR)	2 (1 – 3)
No. of follow-up visits (median, IQR)	1 (1 – 2)
Time to AF/AFL recurrence, days (median, IQR)	182 (121-230)
Redo-ablation procedure	91 (7.7)

MANIFEST-PF: Efficacy K-M Analysis of Freedom from AF/AFL: By AF Subtype

Paroxysmal AF ⊐Persistent AF Long-standing Persistent AF

AFtype

<u>6-month Estimate</u> Paroxysmal AF: 86.6% Persistent AF: 79.6%

<u>12-month Estimate</u> Paroxysmal AF: 73.4% Persistent AF: 58.2%

MANIFEST-PF Registry: Safety Major vs Minor AEs

	N=1,334 (%)		N=1,334 (%)
Major Complications	<u>22 (1.6%)</u>	Minor Complications	<u>55 (4.1%)</u>
Esophageal Fistula	0	Pericardial effusion (w/o intervention)	4 (0.3%)
Esophageal Dysmotility	0	Pericarditis	1 (0.07%)
Pulmonary Vein Stenosis	0	TIA	2 (0.1%)
Pericardial Tamponade	16 (1.1%)	Phrenic Nerve Injury	
Percutaneous Treatment	12 (0.9%)	Transient Fffect δ	4 (0.3%)
Surgical Treatment	2 (0.1%)	Vascular	35 (2.5%)
Stroke	3 (0.2%)*	Hematoma	26 (1.9%)
Phrenic Nerve Injury (persistent) †	0	Pseudoaneurysm	2 (0.1%)
Vascular AEs requiring surgery	2 (0.1%)	AV Fistula	5 (0.4%)
Coronary artery spasm	1 (0.07%)	Other	2 (0.1%)
Death	1 (0.07%)*	Respiratory-related	4 (0.3%)
* One patient who sustained a stroke s	ubseauentlv died.	Deep venous thrombosis	1 (0.07%)

+ Defined as persisting beyond hospital discharge.

§ Defined as recovering before hospital discharge

There were no patients with late complications

Air embolism

Other

2 (0.1%)

2 (0.1%)

MANIFEST-PF Registry: Safety PFA-Specific vs Non-(PFA-) Specific AEs

	N=1,334 (%)		N=1,334 (%)
Major Complications	22 (1.6%)	Minor Complications	55 (4.1%)
Esophageal Fistula	0	Pericardial effusion (w/o intervention)	4 (0.3%)
Esophageal Dysmotility	0	Pericarditis	1 (0.07%)
Pulmonary Vein Stenosis	0	TIA	2 (0.1%)
Pericardial Tamponade	16 (1.1%)	Phrenic Nerve Injury	
Percutaneous Treatment	12 (0.9%)	Transient Effect §	4 (0.3%)
Surgical Treatment	2 (0.1%)	Vascular	
Stroke	3 (0.2%)*	Hematoma	26 (1.9%)
Phrenic Nerve Injury (persistent) †	0	Pseudoaneurysm	2 (0.1%)
Vascular AEs requiring surgery	2 (0.1%)	AV Fistula	5 (0.4%)
Coronary artery spasm	1 (0.07%)	Other	2 (0.1%)
Death	1 (0.07%)*	Respiratory-related	4 (0.3%)
* One patient who sustained a stroke s	uhsequently died	Deep venous thrombosis	1 (0.07%)

Air embolism

Other

2 (0.1%)

2 (0.1%)

* One patient who sustained a stroke subsequently died. † Defined as persisting beyond hospital discharge.

§ Defined as recovering before hospital discharge

MANIFEST-PF Registry: Safety Coronary Spasms

ORIGINAL RESEARCH ARTICLE

Coronary Arterial Spasm During Pulsed Field Ablation to Treat Atrial Fibrillation

Vivek Y. Reddy^(b), MD; Jan Pelru, MD; Moritoshi Funasako, MD; Karel Kopriva, MD; Pavel Hala, MD; Milan Chovanec, MD; Marek Janotka, MD; Stepan Kralovec; Petr Neuzil^(b), MD, PhD

MANIFEST-PF Registry Conclusions

- In an <u>unselected</u> population undergoing first-ever AF ablation in routine practice, using the <u>pentaspline PFA catheter</u>:
 - Is being employed in both paroxysmal and persistent AF patients
 - Beyond PVI, ablation in ~1/4 of pts (most often LAPW ablation)
 ➤ Achieves PVI in 99%, with good procedural times
 - Despite first use of a novel PFA catheter, Good safety profile:
 - 1. C/w preferential tissue ablation (particularly no evidence of esophageal damage, PV stenosis or phrenic nerve injury persisting beyond hospitalization)
 - 2. Significant rate of "generic" catheter complications (particularly pericardial tamponade & vascular complications)
 - 3. Was not associated with any Late Complications
 - Efficacy profile: Freedom from Recurrent AF/AT/AFL was quite good (better for paroxysmal than persistent AF)

MANIFEST-PF Registry Limitations

- Retrospective study
 - Follow-up was not pre-specified
 - Though many centers had prospective center-level registries
- Efficacy results
 - Minority of patients reached 1-year duration of follow-up
 - Variability in frequency and/or intensity (eg, ±Holters) of f/u
 - Durability of PVI is unknown (as well as other lesions sets)
- Safety results:
 - Little data on safety of lesion sets beyond PVI
 - What happens when >10,000 pts are treated?

Ongoing Clinical Trials *ADVENT IDE & BEAT AF*

PRAGUE RHYTHM

With live demonstrations (Novel Technology Forum)

MARCH 19 - 21, 2023, Prague, Czech Republic

www.prague-rhythm.cz

The MANIFEST-PF Cooperative Physicians & Centers-1

Petr Neuzil, Jan Petru	Homolka Hospital, Prague, Czech Republic
Tobias Reichlin, Lauren Roten	Inselspital – Bern University Hospital, Switzerland
Kars Neven, Anna Füting	Alfried Krupp Hospital, Essen, Germany
Andreas Metzner, Andreas Rillig	University Heart and Vascular Center, UKE-Hamburg
Jim Hansen, Arne Johannessen	Copenhagen University Hospital, Denmark
Yuri Blaauw, Bart Mulder	Universitair Medish Groningen, Netherlands
Philippe Maury, Anne Rollin	University Hospital Rangueil, Toulouse, France
Thomas Arentz, Heiko Lehmann	Universitätsklinikum Freiburg, Germany
Philipp Sommer, Christian Sohns	Heart & Diabetes Center NRW, Ruhr-Univ Bochum, Germany
Ante Anic, Zrinka Jurisic	University Hospital Center Split, Split, Croatia
Frederic Anselme, Arnaud Savoure	Rouen Hospital, Rouen, France
Serge Boveda, Stephanes Combes	Clinique Pasteur, Toulouse, France

The MANIFEST-PF Cooperative Physicians & Centers-2

Thomas Deneke, Karin Nentwich	Heart Center Bad Neustadt, Germany
Stephan Willems, Melanie Gunawande	Asklepios Hospital St.Georg, Hamburg, Germany
Pepijn van der Voort, Alexandre Ouss	Catharina Ziekenhuis Eindhoven, The Netherlands
Roland Tilz, Bettina Kirstein	University Heart Center, Lubeck, Germany
Moritoshi Funasako, Petr Neuzil	Neuron Medical, Brno, Czech Republic
Daniel Scherr, Martin Manninger	Medical University of Graz, Austria
Reza Wakili, Jan-Eric Bohnen	University Duisburg-Essen, Germany
Daniel Steven, Arian Sultan	Universitätsklinikum Köln AöR, Germany
Josef Kautzner, Petr Peichl	IKEM, Prague, Czech Republic
Johan Vijgen, Pieter Koopman	Jessa Hospitals, Hasselt, Belgium
Pierre Jais, Nicolas Derval	IHU LIRYC, CHU Bordeaux, University of Bordeaux, France
Mohit Turagam, Vivek Reddy	Mount Sinai Hospital, New York, US

MANIFEST-PF Registry: Safety Adverse Events

	N=1,334 (%)		N=1,334 (%)
Major Complications	22 (1.6%)	Minor Complications	55 (4.1%)
Esophageal Fistula	0	Pericardial effusion (w/o intervention)	4 (0.3%)
Esophageal Dysmotility	0	Pericarditis	1 (0.07%)
Pulmonary Vein Stenosis	0	TIA	2 (0.1%)
Pericardial Tamponade	16 (1.1%)	Phrenic Nerve Injury	
Percutaneous Treatment	12 (0.9%)	Transient Effect §	4 (0.3%)
Surgical Treatment	2 (0.1%)	Vascular	
Stroke	3 (0.2%)*	Hematoma	26 (1.9%)
Phrenic Nerve Injury (persistent) †	0	Pseudoaneurysm	2 (0.1%)
Vascular AEs requiring surgery	2 (0.1%)	AV Fistula	5 (0.4%)
Coronary artery spasm	1 (0.07%)	Other	2 (0.1%)
Death	1 (0.07%)*	Respiratory-related	4 (0.3%)
* One patient who sustained a stroke subsequently died.		Deep venous thrombosis	1 (0.07%)
<i>† Defined as persisting beyond hospital discharge.</i>		Air embolism	2 (0.1%)
-,	· · · · · · · · · · · · · · · · · · ·		

§ Defined as recovering before hospital discharge

There were no patients with late complications

Other

2 (0.1%)

MANIFEST-PF Registry: Safety PFA-Specific vs Non-(PFA-) Specific AEs

Ma

	N=1,334 (%)		N=1,334 (%)
ajor Complications	22 (1.6%)	Minor Complications	55 (4.1%)
Esophageal Fistula	0	Pericardial effusion (w/o intervention)	4 (0.3%)
Esophageal Dysmotility	0	Pericarditis	1 (0.07%)
Pulmonary Vein Stenosis	0	TIA	2 (0.1%)
Pericardial Tamponade	16 (1.1%)	Phrenic Nerve Injury	
Percutaneous Treatment	12 (0.9%)	Transient Effect §	4 (0.3%)
Surgical Treatment	2 (0.1%)	Vascular	
Stroke	3 (0.2%)*	Hematoma	26 (1.9%)
Phrenic Nerve Injury (persistent) †	0	Pseudoaneurysm	2 (0.1%)
Vascular AEs requiring surgery	2 (0.1%)	AV Fistula	5 (0.4%)
Coronary artery spasm	1 (0.07%)	Other	2 (0.1%)
One patient who sustained a stroke s	subsequently died	Respiratory-related	4 (0.3%)
Defined as persisting beyond hospita		Deep venous thrombosis	1 (0.07%)
,		Air embolism	2 (0.1%)

S Defined as recovering before hospital discharge 1%

PFA: "Preferential" Tissue Ablation PFA vs RFA vs Cryo

H.Cohet, Y.Nakatani, S.Sridi-Cheniti, et al, Europace (2021)

Pentaspline PFA Catheter Procedure Methodology

- Equipment (Farapulse-Boston Scientific, Inc)
 - PFA Catheter: Farawave
 - (0.035 Amplatz extra stiff straight guidewire)
 - 13-Fr Deflectable Sheath: Faradrive
 - Generator: Farastar
- Lesion sets (standard protocol per training):
 - <u>PVI</u>: 2 x basket → rotate → 2 x basket → : 2 x flower → rotate → 2 x flower
 - <u>LAPW</u> (all flower pose): 2 x at each location
- Esophageal "management": nothing
 - No temp monitoring / eso deviation / eso cooling/etc

