Integrative optimization in CRT recipients

Kamil Sedláček, MD Dptm. of Cardiology Electrophysiology Institute of Clinical and Experimental Medicine (IKEM) Praha, Czech republic

20 years of cardiac resynchronization therapy in the Czech Republic

An international symposium to commemorate the 20th anniversary of the first CRT implants in the Czech Republic

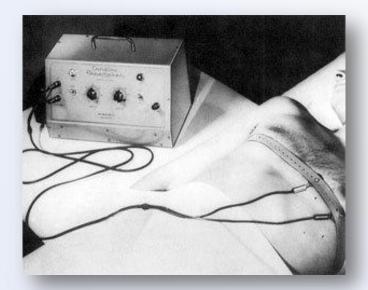
June 12, 2019

Periods in CRT therapy - outline

before 1990	physiological a technological concepts
1990 – 2000	development of CRT technique
2000 – 2010	establishment of successful EB therapy
2010 – 2019	optimization era (integration of knowledge)
2019 –	4th revolution in device therapy

KЕ

Before 1990


Physiological and technological concepts

KE

Birth of device cardiology

1952 transcutaneous pacing (Paul M. Zoll, Boston)
1956 endocardial temporary pacing (S. Furman, US)
1958 implantable PM



Drs. Rune Elmqvist Ake Senning

Zoll PM: Resuscitation of heart in ventricular standstill by external electrical stimulation. NEJM 247:768, 1952 Furman S, Robinson G: Use of an intracardiac pacemaker in the correction of total heart block. Surg Forum 9:245, 1958

First PM in former Czechoslovakia

Jan Dufek, MD IKEM, 6. July 1962

Dartmouth Medicine Winter 2005

DARTMOUTH MEDICINE

A Magazine for Automaticana entering of Dartmonan Meancal School and Dartmonan-Fricticock Meancal Center wither 200

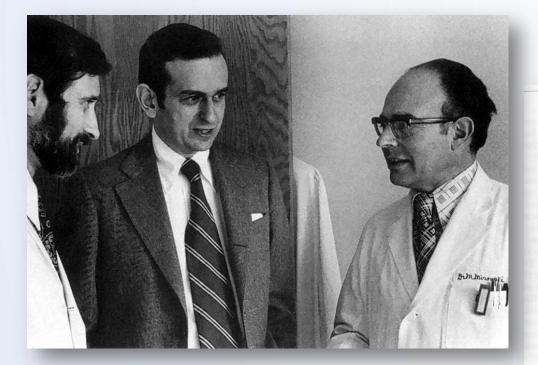
The Dufek File

PDE Version 🚳 Printer-Eriendly Version

The story of the first pacemaker implantation performed behind the Iron Curtain is as suspenseful as Page 12345678 any John to Carré novel, But this saga's literary twists and technological turns—Irom the pen of the DMS graduate who performed the operation—there to do not with respinsage, but will surgery. And humanity.

By Timothy Takaro, M.D.

The Codel Was-where Communities these a constant spectra and few Americans were allowed behind fam Cutatian-own seems long ago and far away. I was recently reminded of the disions and far and that are when I came across a file of correspondence more than 40 years of that ear when I came across a file of correspondence more than 40 years of the tack of theters. cables, and news chippings streed before a strength of the tack of the streed of the tack of the tack of the streed of the tack of the tack of the streed of the tack of the tack of the streed of the streed


It was the spring of 1962. Just over a year earlier, Russian leader Nihita Khrushchev had discupted a session of the United Nations by banging his shoe on a deak. The Berlin Wall had been up for eight months, sealing off East Berliners from all contact with the West. The Cuban Missile Crisis was nearing its denouement.

Yet amough the tensions, there were gimmers of the detent to come. I was about to leave to spend several months in the Soviet Urion under the auspices of the newly signed U.S.-U.S.S.R. Scientific and optimal paperval to take a leave from my post as associate chief of staff at the VA Hospital in Oteen, N.C., and had acquired a working knowledge of Russian. My

1970-72: drs. Mower, Moss, Mirowski

K€ M

ICD – first implants in Europe

- 1982 France -October 14
- **1984 Germany January 17**

Switzerland - March 6

Netherlands - April 4

Belgium – April 11

U.K. – April 27

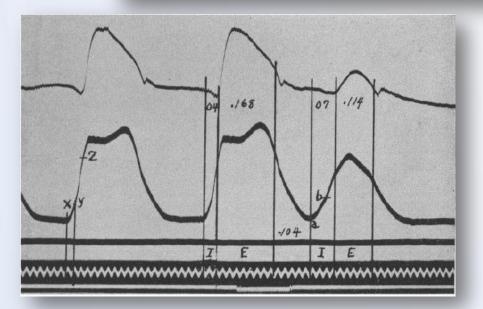
Spain – June 16

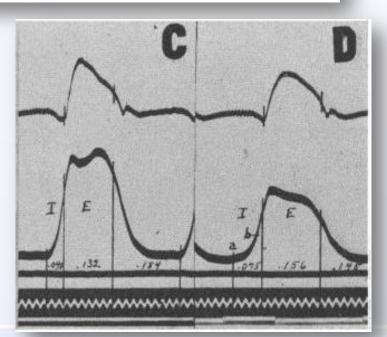
Norway - August 7

Sweden – September 19

Italy – September 27

Czech Republic – Oct 31 – dr. Bytešník, dr. Náprstek


THE MUSCULAR REACTIONS OF THE MAMMALIAN VEN-TRICLES TO ARTIFICIAL SURFACE STIMULI

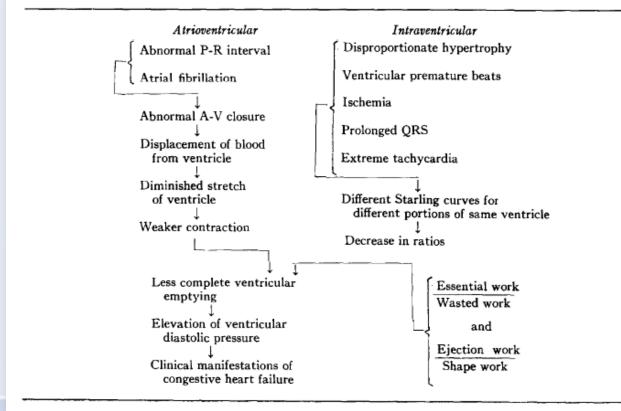

CARL J. WIGGERS

From the Physiological Laboratory, Western Reserve University, School of Medicine, Cleveland, Ohio

Received for publication April 20, 1925

The muscular reactions of the mammalian ventricles to localized artificial stimuli have not been studied with the degree of precision that the subject merits. This is due partly to the fact that, until recently, we

Wiggers, C. (1925). "The muscular reactions of the mammalian ventricles to artificial surface stimuli."American Journal of Physiology**73**(2): 346-378.


Review

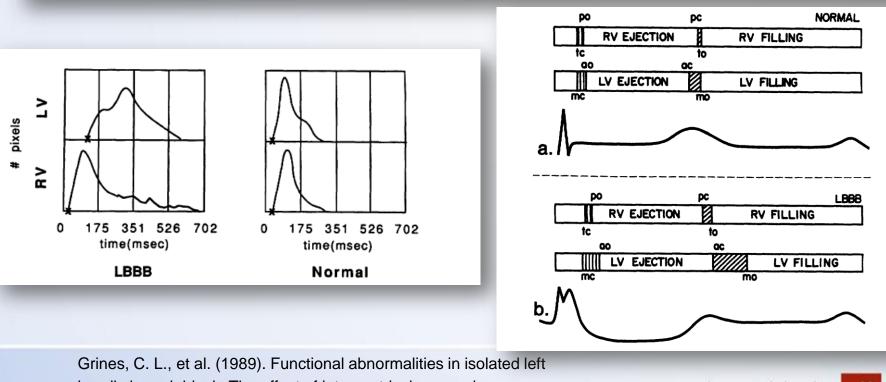
Some unanswered questions concerning enlargement and failure of the heart

Grady Reddick Memorial Lecture

Tinsley R. Harrison, M.D.* Birmingham, Ala.

Table II. Some probable mechanisms of cardiac asynergy

INSTITUT KLINICKÉ A EXPERIMENTÁLNÍ MEDICINY KLINIKA KARDIOLOGIE



Harrison TR Am H. J 1965

Functional Abnormalities in Isolated Left Bundle Branch Block

The Effect of Interventricular Asynchrony

Cindy L. Grines, MD, Thomas M. Bashore, MD, Harisios Boudoulas, MD, Shari Olson, BS, Phillip Shafer, MD, and Charles F. Wooley, MD

Grines, C. L., et al. (1989). Functional abnormalities in isolated le bundle branch block. The effect of interventricular asynchrony. Circulation**79**(4): 845-853.

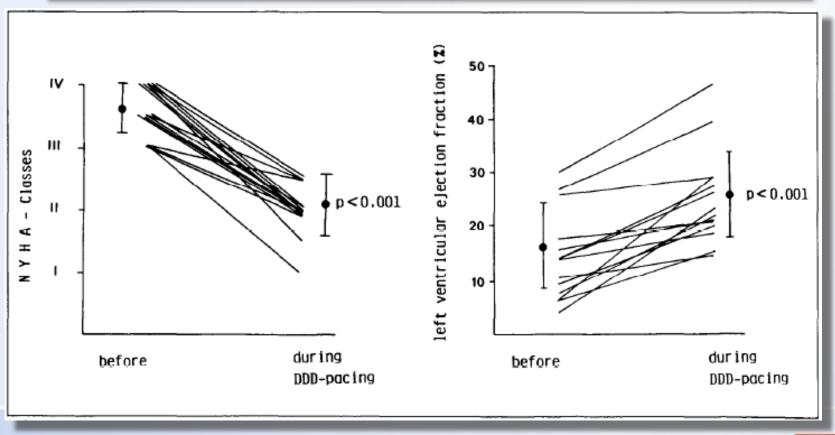
An Even More Physiological Pacing: Changing the Sequence of Ventricular Activation

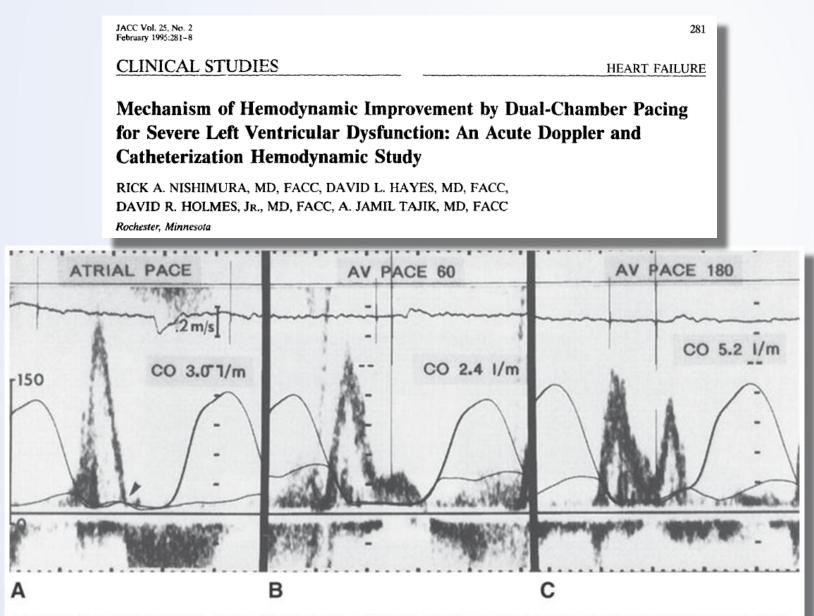
E. de Teresa, J. L. Chamorro, L. A. Pulpón, Carmen Ruiz, Isabel R. Bailón, J. Alzueta, M. de Artaza

Summary: Physiological pacing includes preservation of A-V sequential stimulation and adaptation of heart rate to body requirements. However the sequence of ventricular activation (VA) is also important. In four patients with a rtic valvular disease, LBBB and HV \geq 70 msec a Medtronic Versatrax DDD pacemaker was implanted at the time of aortic valve surgery. The ventricular electrode was placed in the free wall of the LV. With differents pulse generator A-V intervals (PG-AV), we obtained: A) LBBB morphology when PG-AV was > A-V conducted interval (C-AV); B) "RBBB" morphology when PG-AV < C-AV, and C) intermediate ("fusion") morphology when PG-AV ~ C-AV. A mean delay of 70 ± 5 msec between beginning of the spontaneous activation of RV and arrival of stimulation to ventricular electrode in LV favoured these fusion beats. The sequence of mechanical ventricular emptying was non-invasively assessed by radioisotopic (Tc-99 m Pyp labelled red blood cells) study of the "wave of emptying" and of phase histograms, using the Fourier's analysis. The most "normal" pattern was found in C. LV ejection fraction (radioisotopic cineangiogram) was 0.59 ± 0.035 in C versus 0.51 ± 0.047 in B (p < 0.001) and 0.47 ± 0.045 in A (p < 0.001). We conclude than an appropriate placement of ventricular electrode besides a correct programation of A-V delay in DDD pacemakers allows for a more synergistic ventricular activation in patients with LBBB, improving their ventricular performance.

de Teresa E, Chamorro J, Pulpon L, et al. An even more physiological pacing: changing the sequence of ventricular activation. In: Steinbach K, Laskovics A, editors. Proceedings of the 7th World Symposium on Cardiac Pacing. Darmstadt, Germany: Steinkopff-Verlag, 1983: 395–401.

1990-2000


Development of CRT technique


Usefulness of Physiologic Dual-Chamber Pacing in Drug-Resistant Idiopathic Dilated Cardiomyopathy

Margarete Hochleitner, MD, Helmut Hörtnagl, MD, Choi-Keung Ng, MD, Heide Hörtnagl, MD, Franz Gschnitzer, MD, and Wolfgang Zechmann, MD

Hochleitner M et al. Am J Cardiol. 1990

(From Nishimura RA, Hayes DL, Holmes DR: Mechanism of hemodynamic improvement by dual chamber pacing for severe left ventricular dysfunction: An acute Doppler and catheterization hemodynamic study. J Am Coll Cardiol 25:281, 1995.)

Nishimura RA. JACC 1995

Four Chamber Pacing in Dilated Cardiomyopathy


S. CAZEAU, P. RITTER, S. BAKDACH, A. LAZARUS, M. LIMOUSIN,* L. HENAO, O. MUNDLER,** J.C. DAUBERT,⁺ and J. MUGICA

Table I.											
Acute Study	Spontaneous	:	Standard VD	D	4-Chamber Pacing						
QRS											
Duration (msec)	200		200			160					
Axis (°)	0		-10	-20							
Morphology	LBBB		LBBB		LBBB						
Hemodynamics											
AV delay (msec)		95	140	190	95	140	190				
PCWP (mmHg)	36	30	28	30	28	25	26				
Cardiac Output (L/min)	3.90	4.45	5.17	4.10	5.69	5.08	4.9				

AV = atrioventricular; LBBB = left bundle branch block; PCWP = pulmonary capillary wedge pressure.

"We doubt that this technique will have an impact on long-term survival, but it could be of major importance to improve the patient's well-being and control heart failure..".

Cazeau ACE 1994; 17(Pt. II}:1974-1979)

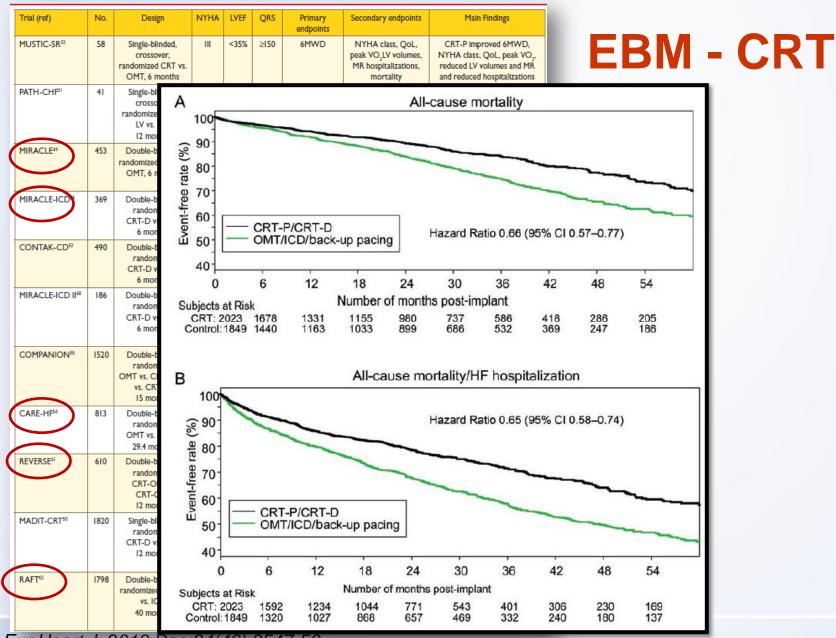
2000-2010

Establishment of successful EB therapy

Trial (ref)	No.	Design	NYHA	LVEF	QRS	Primary endpoints	Secondary endpoints	Main Findings	
MUSTIC-SR ⁵²	58	Single-blinded, crossover, randomized CRT vs. OMT, 6 months	Ш	<35%	≥150	6MWD	NYHA class, QoL, peak VO ₂ LV volumes, MR hospitalizations, mortality	CRT-P Improved 6MWD, NYHA class, QoL, peak VO ₂ , reduced LV volumes and MR and reduced hospitalizations	
PATH-CHF ^{SI}	41	Single-blinded, crossover, randomized RV vs. LV vs. BIV, I2 months	III–IV	NA	≥150	Peak VO ₂ , 6MWD	NYHA class, QoL hospitalizations	CRT-P Improved NYHA class, QoL and 6MWD and reduced hospitalizations	
MIRACLE ⁴⁹	453	Double-blinded, randomized CRT vs. OMT, 6 months	III–IV	≤35%	≥ 30	NYHA class, 6MWD , QoL	Peak VO ₂ LVEDD, LVEF, MR clinical composite response	CRT-P Improved NYHA class, QoL and 6MWD and reduced LVEDD, MR and Increased LVEF	
MIRACLE-ICD54	369	Double-blinded, randomized CRT-D vs. ICD, 6 months	III–IV	≤35%	≥ 30	NYHA class, 6MWD , QoL	Peak VO ₂ LVEDD, LVEF, MR clinical composite response	CRT-D Improved NYHA class, QoL, peak VO ₂	
CONTAK-CD ⁵³	490	Double-blinded randomized CRT-D vs. ICD, 6 months	- - V	≤35%	≥120	NYHA class, 6MWD , QoL	LV volume, LVEF composite of mortality, VT/VF, hospitalizations	CRT-D Improved 6MWD, NYHA class, QoL, reduced LV volume and Increased LVEF	
MIRACLE-ICD II	186	Double-blinded, randomized CRT-D vs. ICD, 6 months	II	≤35%	≥130	Peak VO ₂	VE/VCO ₂ , NYHA, QoL, 6MWD, LV volumes and EF, composite clinical endpoint	CRT-D Improved NYHA, VE/CO ₂ and reduced LV volumes and Improved LVEF	
COMPANION ⁵⁵	1520	Double-blinded randomized OMT vs. CRT-P / or vs. CRT-D, I5 months	III–IV	≤35%	≥120	All-cause mortality or hospitalization	All-cause mortality, cardiac mortality	CRT-P and CRT-D reduced all-cause mortality or hospitalization	
CARE-HF ⁵⁶	813	Double-blinded randomized OMT vs. CRT-P 29.4 months	III–IV	≤35%	≥120	All-cause mortality or hospitalization	All-cause mortality, NYHA class, QoL	CRT-P reduced all-cause mortality and hospitalization and improved NYHA class and QoL	
REVERSE ⁶¹	610	Double-blinded, randomized CRT-ON vs. CRT-OFF, I2 months	1–11	≤40%	≥l20	% worsened by clinical composite endpoint	LVESV Index, heart failure hospitalizations and all-cause mortality	CRT-P/CRT-D did not change the primary endpoint and did not reduce all-cause mortality but reduced LVESV index and heart failure hospitalizations.	
MADIT-CRT ⁵⁰	1820	Single-blinded, randomized CRT-D vs. ICD, I2 months	1–11	≤30%	≥ 30	All-cause mortality or heart failure hospitalizations	All-cause mortality and LVESV	CRT-D reduced the endpoint heart failure hospitalizations or all-cause mortality and LVESV. CRT-D did not reduced all-cause mortality	
RAFT ⁶²	1798	Double-blinded, randomized CRT-D vs. ICD 40 months	11-111	≤30%	≥l20	All-cause mortality or heart failure hospitalizations	All-cause mortality and cardiovascular death	CRT-D reduced the endpoint all-cause mortality or heart failure hospitalizations. In NYHA III, CRT-D only reduced significantly all-cause mortality	

EBM - CRT

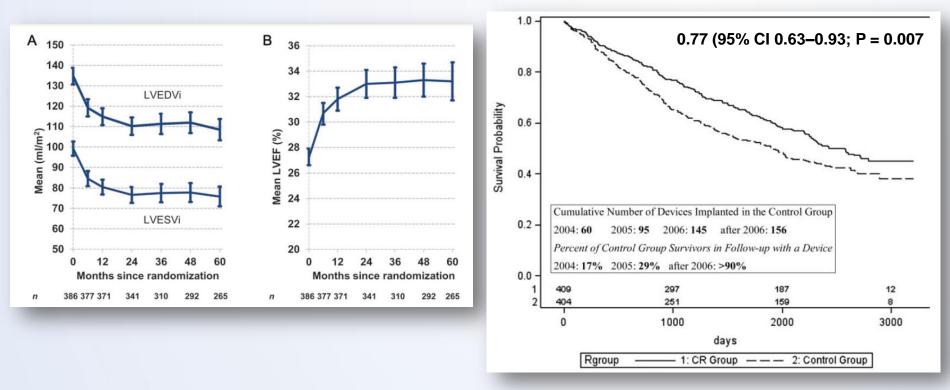
Brignole M et al. 2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy Eur Heart J. 2013;34:2281-329.



	Trial (ref)		No.	Design N		LVEF	QRS	Primary endpoints	Secondary e	ndpoints	Main Find	ings		
	MUSTIC-S	iR⁵²	58	Single-blinded, crossover, randomized CRT vs. OMT, 6 months	<	<35%	≥150	6MWD	NYHA clas peak VO ₂ LV MR hospital mortal	volumes, lizations,	CRT-P Improve NYHA class, QoL reduced LV volun and reduced hosp	., peak VO ₂ , nes and MR	EB	SM - CRT
	PATH-CH	F ^{SI}	41	Single-blinded, II crossover,	II-IV	NA	≥150	Peak VO ₂ , 6MWD	NYHA clas hospitaliz		CRT-P Improved N QoL and 6MWD a			
COMPANIO	N ⁵⁵	1520		Double-blinde randomized OMT vs. CRT-P vs. CRT-D, 15 months			I–IV	≤35%	≥I20	mo	I-cause rtality or italization		use mortality, ac mortality	CRT-P and CRT-D reduced all-cause mortality or hospitalization
CARE-HF ⁵⁶		813		Double-blinde randomized OMT vs. CRT 29.4 months	ъР		I–IV	≤35%	≥I20	mo	I-cause rtality or italization		use mortality, A class, QoL	CRT-P reduced all-cause mortality and hospitalization and improved NYHA class and QoL
REVERSE ⁶¹		610		Double-blinde randomized CRT-ON vs. CRT-OFF, 12 months			-11	≤40%	≥I20	by co	orsened clinical mposite dpoint	he: hospit	ESV Index, art failure alizations and ise mortality	CRT-P/CRT-D did not change the primary endpoint and did not reduce all-cause mortality but reduced LVESV index and heart failure hospitalizations.
MADIT-CRT	50	1820		Single-blinded randomized CRT-D vs. ICI I2 months		1	-11	≤30%	≥I30	mo hea	l-cause rtality or rt failure talizations	1	use mortality ad LVESV	CRT-D reduced the endpoint heart failure hospitalizations or all-cause mortality and LVESV. CRT-D did not reduced all-cause mortality
RAFT₽		1798	· I ·	Double-blinde randomized CR vs. ICD 40 months		1	-111	≤30%	≥I20	mo hea	l-cause rtality or rt failure talizations		use mortality ardiovascular death	CRT-D reduced the endpoint all-cause mortality or heart failure hospitalizations. In NYHA III, CRT-D only reduced significantly all-cause mortality
				40 months				hospitalizations			NYHA III, CRT-D	only reduced		

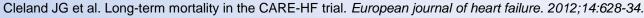
Eur Heart J. 2013;34:2281-329.

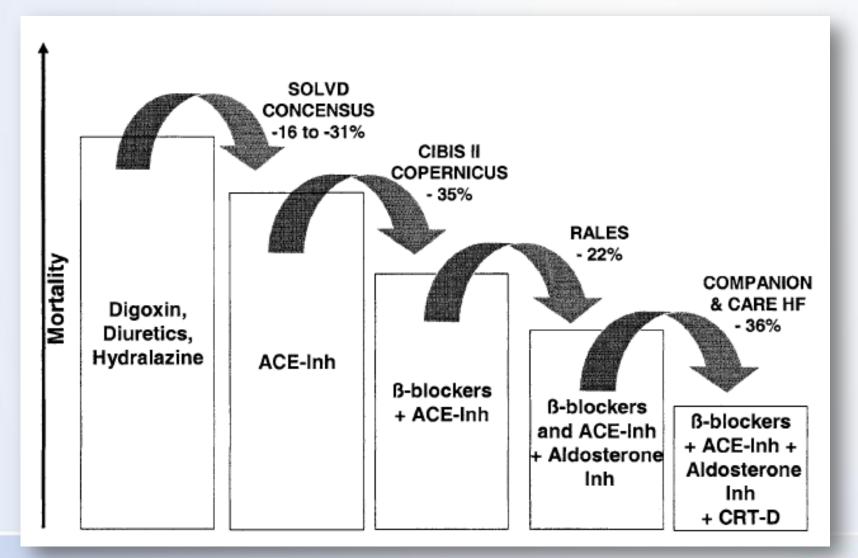
KLINIKA KARDIOLOGIE


Eur Heart J. 2013 Dec;34(46):3547-56

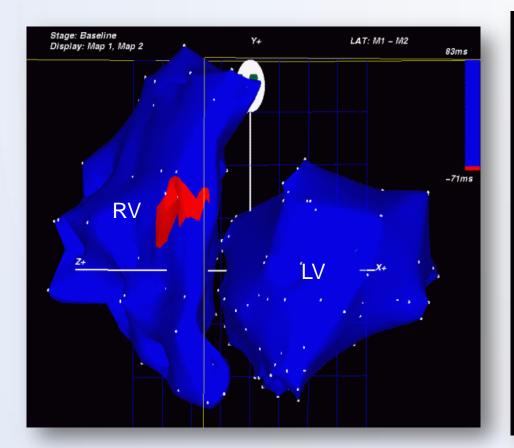
Long-term CRT effect

REVERSE (5 yrs)

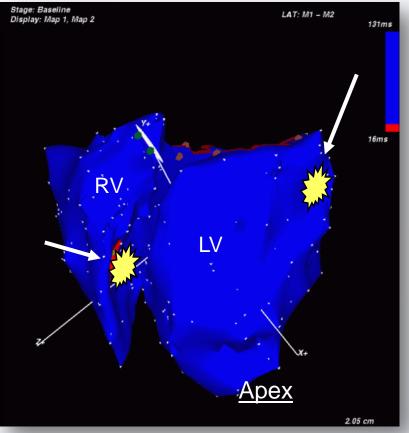

CARE-HF (9 yrs - mortality)


Linde C et al. Long-term impact of cardiac resynchronization therapy in mild heart failure: 5-year results from the REVERSE study. *European heart journal.* 2013;34:2592-9.

€F



EB HF therapy

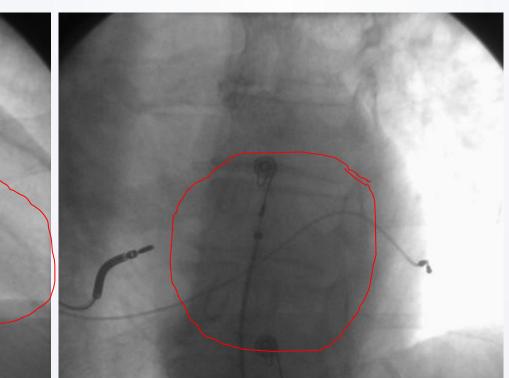


Principle of CRT

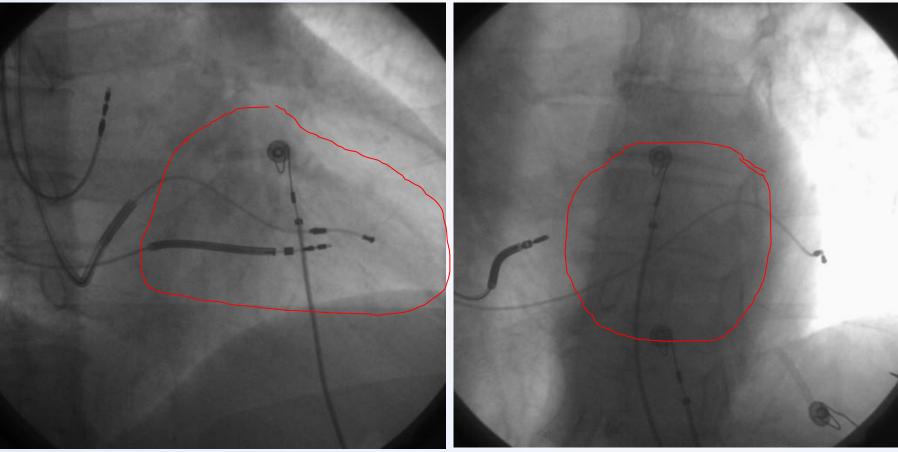
Electric activation in LBBB

Peichl P, Kautzner J, 2006

Biventricular pacing



CRT is an electric therapy



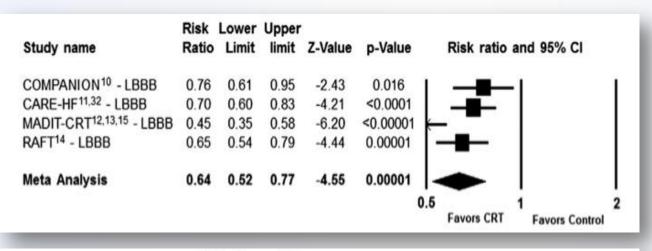
Lead system

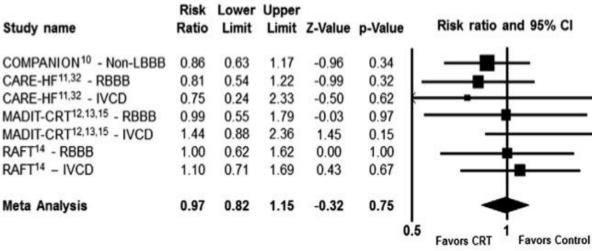
RAO

LAO

IKE M

CRT guidelines


Recommendations	Class ^a	Level ^b
CRT is recommended for symptomatic patients with HF in sinus rhythm with a QRS duration ≥150 msec and LBBB QRS morphology and with LVEF ≤35% despite OMT in order to improve symptoms and reduce morbidity and mortality.	I.	A
CRT should be considered for symptomatic patients with HF in sinus rhythm with a QRS duration \geq 150 msec and non-LBBB QRS morphology and with LVEF \leq 35% despite OMT in order to improve symptoms and reduce morbidity and mortality.	lla	В
CRT is recommended for symptomatic patients with HF in sinus rhythm with a QRS duration of 130–149 msec and LBBB QRS morphology and with LVEF ≤35% despite OMT in order to improve symptoms and reduce morbidity and mortality.	I.	В
CRT may be considered for symptomatic patients with HF in sinus rhythm with a QRS duration of 130–149 msec and non-LBBB QRS morphology and with LVEF ≤35% despite OMT in order to improve symptoms and reduce morbidity and mortality.	llb	В
CRT rather than RV pacing is recommended for patients with HFrEF regardless of NYHA class who have an indication for ventricular pacing and high degree AV block in order to reduce morbidity. This includes patients with AF (see Section 10.1).	I	A
CRT should be considered for patients with LVEF \leq 35% in NYHA Class III–IV ^d despite OMT in order to improve symptoms and reduce morbidity and mortality, if they are in AF and have a QRS duration \geq 130 msec provided a strategy to ensure bi-ventricular capture is in place or the patient is expected to return to sinus rhythm.	lla	В
Patients with HFrEF who have received a conventional pacemaker or an ICD and subsequently develop worsening HF despite OMT and who have a high proportion of RV pacing may be considered for upgrade to CRT. This does not apply to patients with stable HF.	IIb	В
CRT is contra-indicated in patients with a QRS duration < 130 msec.	ш	A

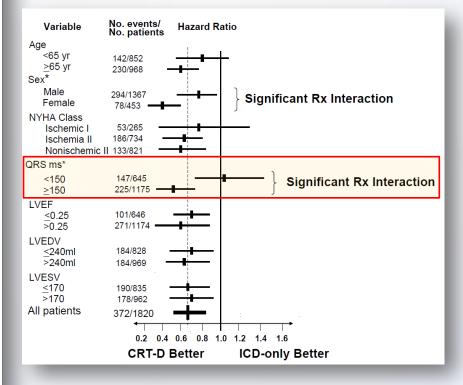


Subanalyses in patients with non-LBBB

LBBB

Non-LBBB

Sipahi I, et al. Am Heart J 2012;163:260-267.e3.)

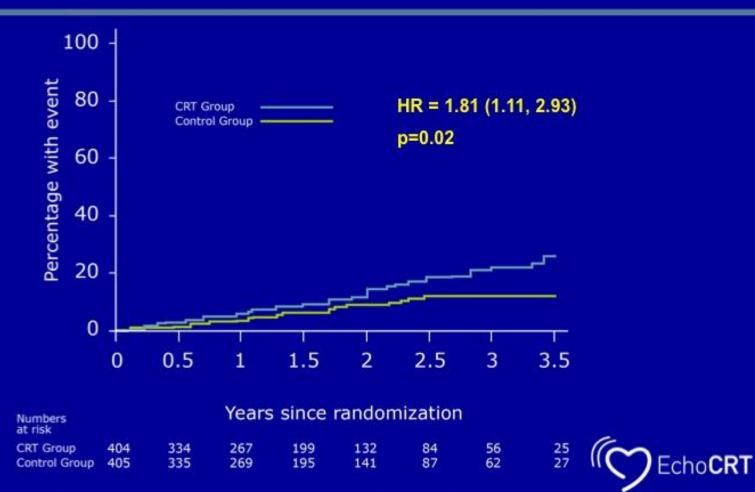

CRT Trials: Effect of QRS Duration

							P Value for
Subgroup	No./Total No.			Hazard Rati	o (95% CI)		Interaction
Age							0.75
<65 yr	241/763						
≥65 yr	420/1035			-8-			
Sex							0.09
Male	573/1490			-8-			
Female	88/308			—			
NYHA class							0.91
II	446/1438						
III	215/360			-8-			
Underlying heart disease							0.90
Ischemic	498/1201						
Nonischemic	163/597						
QRS duration							0.003
Intrinsic QRS <150 msec	248/627			-+	-		
Intrinsic QRS ≥150 msec	359/1036			-8-			
Paced QRS ≥200 msec	54/135				<u> </u>		
Left ventricular ejection fraction							0.05
<20%	175/431						
≥20%	486/1367			-8-			
QRS morphologic features							0.046
Right bundle-branch block	70/161						
Left bundle-branch block	449/1295						
NIVCD	88/207				—		
Paced	54/135				<u> </u>		
Atrial rhythm							0.14
Permanent atrial fibrillation or flutter	104/229						
Sinus or atrial paced	557/1569			-8-			
Diabetes							0.22
Yes	258/606						
No	403/1192			-#-			
Hypertension							0.84
Yes	292/799						
No	369/999						
Estimated GFR							0.70
<60 ml/min/1.73 m ²	407/900			-8-			
≥60 ml/min/1.73 m ²	250/882						
All patients							
		0.1	0.2	0.5 1	2 5	10	
		-	ICD-CR	Better	ICD Better	-	

Figure 3. Subgroup Analyses of Death or Hospitalization for Heart Failure (Composite Primary Outcome).

Hazard ratios and 95% confidence intervals are shown for the primary outcome in each prespecified subgroup. GFR denotes glomerular filtration rate, NIVCD nonspecific intraventricular conduction delay, and NYHA New York Heart Association.

Tang et al. RAFT Trial. NEJM 2010


Moss et al. MADIT-CRT Trial. NEJM 2009

Echo-CRT

All-Cause Mortality

IKE M

4 deaths in the control group and 1 death in CRT group were after (L)VAD/ Transplant and were excluded from analysis.

2010-2019

Optimization era integration of knowledge

Components of CRT benefit (integrative approach)

Preimplant – patient selection

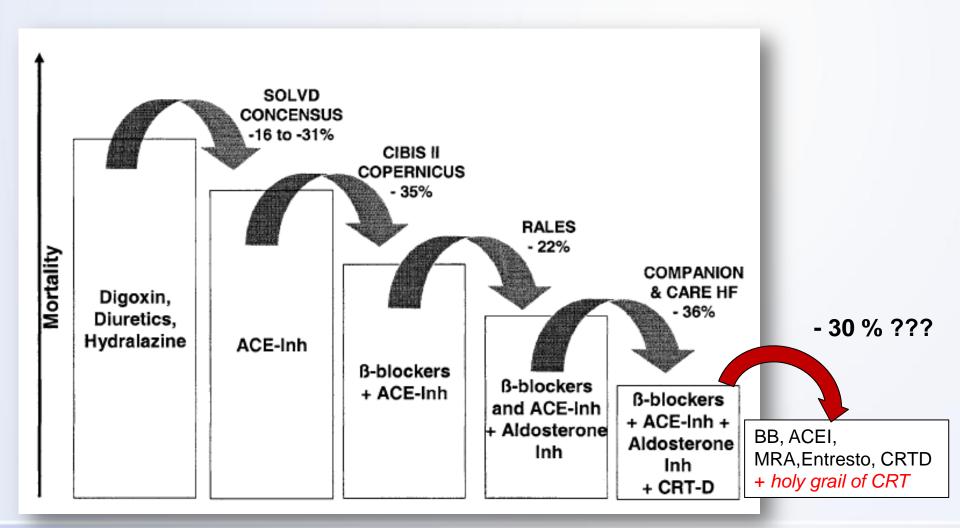
- LBBB (true LBBB) and QRS width
- Absence of scar/fibrosis/dilatation TTE, CMR
- Absence of end-stage renal disease
- Absence of significant MR

Intraimplant

- LV lead position (all lead configuration)
- Correct programming
- Minimization of complications (infections)

Postimplant

- Pharmacotherapy optimization
- AVN ablation in pts. with AFIB
- Reprogramming
- Remote monitoring
- Device-based optimization
- Management of complications



4th revolution in device cardiology

EBM in HF

Hot topics in CRT

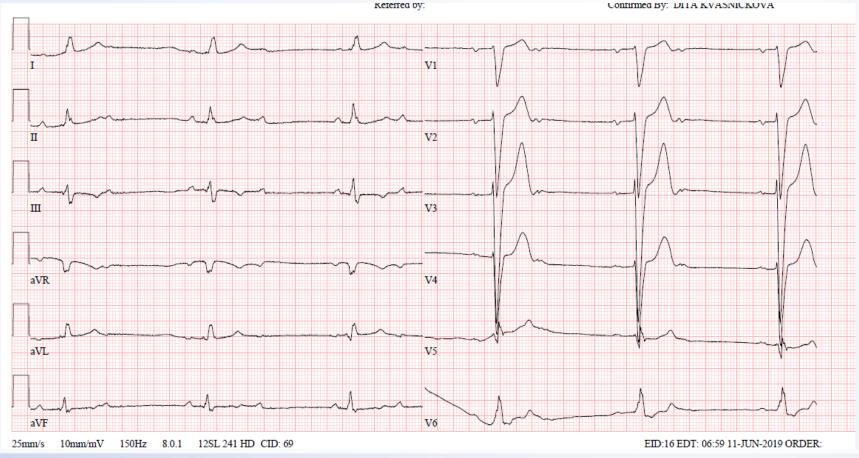
Multisite pacing

LV endocardial pacing

Combined strategies for HF and MR

- CRT
- o Surgery
- o Mitra-clip
- Intra-CS therapies

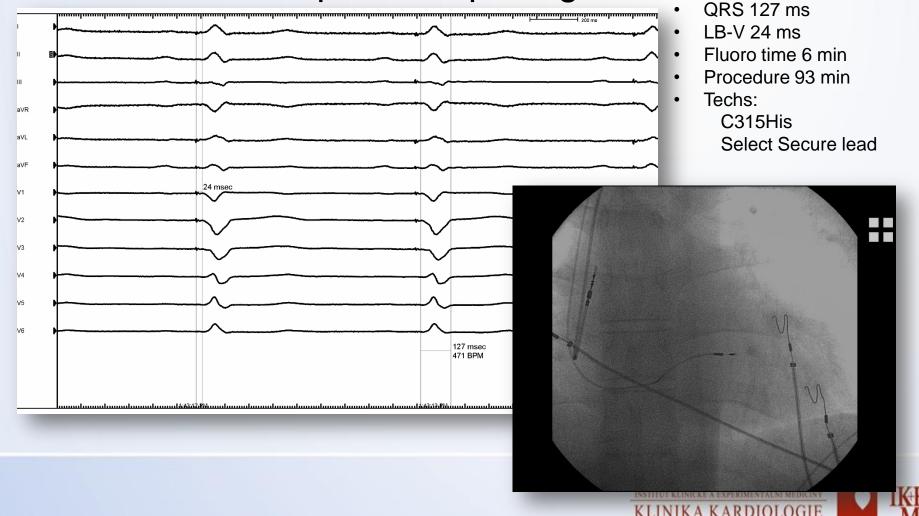
Direct conduction system pacing

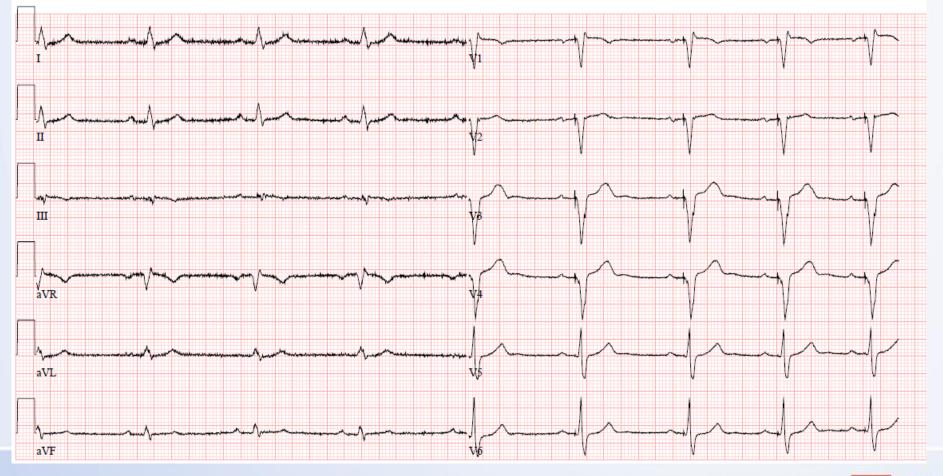

Case presentation

- 36-year old man, previously healthy
- Nov 2018 admitted for AVB 3° discharged after AV conduction normalized (ABx therapy for suspected Lyme borreliosis, neg. serology)
- June 2019 admitted for AVB 3° recurrence
- Normal TTE, normal CMR, neg. Serology
- No significant family history

Direct conduction system pacing

Presenting ECG




Direct conduction system pacing

Threshold 0,5V/0,4ms

Selective transseptal LBB pacing

Direct conduction system pacing Nonselective LBB pacing

Conclusions

CRT has evolved from sound physiological reasoning

Not too many therapies have comparable evidence

Technology has changed and currently meets implanters' needs

Response to CRT is a continuum between super-response and harm

Comprehensive optimization of CRT delivery and follow-up may maximize benefit

Conduction system pacing is the most important disruptive tech/concept

