

The effects of diferent plant extracts on cardiovascular function: focus on oxidative stress Prof. dr Vladimir Jakovljevic, MD, PhD

President of IACS-European Section President of International Society of Pathophysiology

Galium verum

- Galium verum (*G verum*, synonyms Lady's bedstraw the Rubiaceae family).
- It has been used for centuries in traditional medicine both as prophylactic and therapeutic agent.

Therapeutic use of *G. verum*

Chemical composition of G. verum

- G. verum extract contain:
- iridoid glycosides
- phenolic compounds
- anthraquinones
- triterpenes etc

□ Phenolic compounds - the most significant constituents efficient in achieving cardioprotection.

How can we prevent heart damage induced by I/R?

Myocardial preconditioning- exposing heart to different agents prior ischemia reperfusion in order to reduce harmful effects of I/R injury.

Pharmacological agents

• The serious side effects of the available drugs limit their usage and still stayed as an important problem for the health system.

Plants and plant-derived products

 Intake of polyphenols from plants is associated with reduced cardiovascular risk.

Benefits of polyphenols in attenuation myocardial of I-R injury

□ A class of naturally occurring compounds present in fruits, plants etc

□ Numerous researches have confirmed the protective effects of plant extracts against reperfusion-induced heart damage, mainly attributed to:

 \checkmark antioxidant

- ✓ anti-inflammatory activity
- ✓ anti-apoptotic activity of polyphenols
- ✓ ability to preserve nitrogen monoxide

First aim of the study

was to assess the effects of methanol extract of *G. verum* on myocardial ischemia/reperfusion injury.

Materials and methods

- The study was performed in the cardiovascular laboratory of the Faculty of Medical Sciences, University of Kragujevac, Serbia.
- Methanol extract was prepared extracting 100g of aerial part of plant with 500 ml of methanol by heat reflux extraction

Treatment with G. verum extract

1. Control

Untreated rats subjected to I/R injury

Male, healthy (n=20)

2. GVE

Methanol extract of G. verum 250 mg/kg every day, 4 weeks, per os before I/R injury

- After a short-term narcosis rats were sacrificed by cervical dislocation.
- After urgent thoracotomy, hearts were rapidly excised, the aortas were cannulated and retrogradely perfused according to Langendorff technique, under a constant perfusion pressure of 70 cmH₂O.

Cardiodynamic parameters

After placing the sensor in the left ventricle, the following parameters of myocardial function have been continuously registered:

- maximum rate of pressure development in the left ventricle (dp/dt max)
- minimum rate of pressure development in the left ventricle (dp/dt min)
- systolic left ventricular pressure (SLVP),
- diastolic left ventricular pressure (DLVP)
- heart rate (HR)

Coronary flow (CF) was measured flowmetrically.

Oxidative stress markers

After sacrificing animals blood samples were taken for determination of systemic redox state

In plasma samples:

- The index of lipid peroxidation, measured as thiobarbituric acid-reactive substances (TBARS)
- Nitrite (NO₂⁻)
- Superoxide anion radical (O₂⁻) and
- Hydrogen peroxide levels (H₂O₂)

In erythrocyte samples:

- Superoxide dismutase (SOD)
- Catalase (CAT)
- Reduced gluthatione (GSH)

Structural alterations of the heart tissue

• Hematoxylin and eosin (HE) staining

Results

Cardiodynamic parameters

dp/dt max (mmHg/s)

dp/dt min (mmHg/s)

SLVP (mmHg)

DLVP (mmHg)

HR (bpm)

CF (ml/min)

Systemic redox state

Pro-oxidants

Antioxidants

Histological changes in myocardium

Control

- G. verum
- In the control group, degenerative changes were more prominent involving zonal necrosis of higher number of cardiomyocytes, with hypereosinophilia, fragmentation of the fibers, and loss of nucleus.
- Focal necrosis of lower number of cardiomyocytes or unicellular was found in the *G. verum* group

Take home conclusions

- *G. verum* extract led to the improvement of functional recovery of cardiac contractility, systolic and diastolic function when applied before ischemia.
- Additionally *G. verum* extract consumption was associated with the less production of pro-oxidants, which indicate alleviation of oxidative stress as one of possible mechanisms underlying cardioprotection during I/R injury.

Second part of the investigation

Galium verum as a new tool for attenuation of doxorubicin-induced cardiotoxicity

Dox-induced cardiotoxicity

• Reports suggest that cardiotoxicity induced by anthracycline derivatives accounts for more than 30% of cardiotoxicity related to chemotherapy

Second aim of the study

To assess the influence of 14-day application of *G. verum* methanol extract on cardiac dysfunction induced by DOX in rats

Treatment with G. verum extract

• 72 h following dox injection rats were sacrificed by cervical dislocation.

Functional parameters of the heart-Cardiodynamic parameters

- After urgent thoracotomy, hearts were rapidly excised, the aortas were cannulated and retrogradely perfused according to Langendorff technique
- Hearts were exposed to gradually increased perfusion pressures PCP1 and PCP2

Results for cardiodynamic parameters

Values of dp/dt max (A) and dp/dt min (B) – cardiac contractility and relaxation

СРР	CTRL	DOX	DOX + GVE	СРР	CTRL	DOX	DOX + GVE
dp/dt max				dp/dt min			
60	6,20	-28,55	-9,81	60	- 5,08	-31,15	-8,13
80	7,24	-17,78	-7,55	80	-5,91	-17,28	-6,85
100	6,98	-13,71	-9,26	100	-5,31	-12,23	-8,34
120	6,23	-9,77	-6,98	120	-3,18	-26,03	-5,36

Values of SLVP (C) and DLVP (D) – systolic and diastolic capacity of the heart

СРР	CTRL	DOX	DOX + GVE	СРР	CTRL	DOX	DOX + GVE
SLVP				DLVP			
60	4,57	-11,85	-5,03	60	1,67	-3,48	-6,46
80	5,33	-35,77	-12,23	80	-5,86	-20,71	-8,05
100	-2,93	-43,88	-9,41	100	3,97	-22,73	-7,34
120	-1,60	-42,93	-13,12	120	3,80	-16,10	-9,11

Values of HR (E) and CF (F)

СРР	CTRL	DOX	DOX + GVE	СРР	CTRL	DOX	DOX + GVE
HR				CF			
60	4,27	-14,43	-7,92	60	8,79	-17,24	-6,82
80	2,58	-21,46	-8,20	80	10,87	-24,32	-13,62
100	3,21	-12,42	-5,44	100	10,42	-23,78	-12,90
120	-0,68	-6,41	-6,19	120	9,62	-22,02	-13,08

Systemic redox state

Pro-oxidants

*p < 0.05 compared to CTRL group; #p < 0.05 compared to DOX group.

Antioxidants

*p < 0.05 compared to CTRL group; #p < 0.05 compared to DOX group.

Histological changes in myocardium

Hematoxylin/eosin-staining

CTRL group DOX group DOX + GVE group

Degree of heart damage

Groups	Score		
CTRL	0.8		
DOX	3.5		
DOX + GVE	2.5		

No change=0 score; focal changes=1 score; Patchy changes=2 score; Confluent changes=3 score; Massive changes=4 score **CTRL**: discrete histological lesions that vary from hyperemia and edema to degenerative changes and unicellular or partially focal necrosis of muscle cells.

DOX : degenerative changes and necrosis are significantly more pronounced, mostly confluent and massive, there are zonal necrosis of a larger number of muscle cells **DOX+GVE**: patchy and confluenttype fields are observed more often.

Take home conclusions

- ✓ Consumption of *G. verum* attenuated oxidative stress and prevented the pathological injuries caused by DOX injection.
- ✓ In the light of these findings, *G. verum* extract can serve as effective add-on therapy in triggering cardioprotection in different pathologies.

Laboratory team

