#### Markers of haemolysis and renal tubular injury after catheter ablation for atrial fibrillation using pulsed field and radiofrequency energy

Marek Hozman, MD, PhD<sup>1</sup>, Barbora Bacova, MD, PhD<sup>2</sup>, Dalibor Herman, MD, PhD<sup>1</sup>, Ivana Fiserova, MSc, PhD<sup>3</sup>, Sabri Hassouna, MD<sup>1</sup>, Vaclav Melenovsky, MD<sup>1</sup>, Jakub Karch, MSc<sup>1</sup>, Jana Vesela, MSc, PhD<sup>1</sup>, Pavel Osmancik, MD, PhD<sup>1</sup>

1: Dept. of Cardiology, University Hospital Kralovske Vinohrady, Charles University, Prague, Czech Republic Dept. of Laboratory Hematology, Central Laboratories, University Hospital Kralovske Vinohrady, Prague, Czech Repub 3: Dept. of Molecular Biology, Charles University, Prague, Czech Republic



o et al., Advances in the Ablation for Arrhythmia Treatment, 2023 ddy et al., JACC, 2019 encultaris,

owever, rare cases of *acute renal failure secondary to tubular jury caused by intravascular haemolysis* have been described ter PFA procedures with a very high number (> 100) of PF







CULTATIS,

an Avondt et al., Nature Reviews Nephrology, 2019

| rrent AKI nomenclature     | Description                                                                                                                                                                           | Interpretation                                                                                                                                                                  |  |  |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Subclinical AKI            | Tubular damage biomarker indicates damage, yet SCr is not elevated                                                                                                                    | <ul> <li>SCr is an insensitive marker of tubular damage</li> <li>Elevation of SCr requires damage to &gt;50% of ne mass. Damage to a portion of the kidney is not de</li> </ul> |  |  |
| nsient versus sustaind AKI | <ul> <li>SCr elevation &gt;3 days<sup>1</sup></li> <li>SCr return 10% of baseline versus &gt;72 h of azotaemia</li> <li>RIFLE-AKI 10% of versus RIFLE-AKI persisting ≥72 h</li> </ul> | A single measurement of SCr at the time of patien<br>encounter does not provide prospective information<br>the kinetics of SGr; transient AKI includes volume                   |  |  |
|                            | Alpha Glutathione S-Transferase, Kidney Injury Molecule 1, C<br>C, Neutrophil Gelatinase-Associated Lipocalin, Osteopontin, (Micro)albur                                              | Clusterin, Cystatin                                                                                                                                                             |  |  |
| Severe AKI                 | Rasi G Letter of support for drug-induced renal tubular injury bioma                                                                                                                  |                                                                                                                                                                                 |  |  |
| Subacute AKI               | Medicines Agency <u>https://www.ema.europa.eu/en/documents/oth</u><br><u>drug-induced-renal-tubular-injury-biomarkers en.pdf</u> (2016).                                              | iuscle, accumulates slowly in ser<br>tients cannot be diagnosed at the<br>patient encounter using SCr criteria                                                                  |  |  |
| Late onset AKI             | <ul> <li>AKI occurring &gt;7 days after birth</li> <li>AKI occurring ≥5 days from admission</li> <li>AKI occurring 48 h after admission</li> </ul>                                    | Optimal use of SCr requires correlating its values clinical cours                                                                                                               |  |  |



esanti et al., Nature Reviews Nephrology, 2019



# Aims of the study

To investigate the impact of ablation energy (**PFA vs. radiofrequency ablation (RFA)**) on the plasma concentration of:

(1) cell-free haemoglobin (CFH)
 (2) and markers of renal tubular injury: neutrophil gelatinase associated lipocalin and kidney inju molecule 1 (NGAL and KIM-1).



# Methods

A prospective nonrandomized study that included a consecutive cohort of patients who underwent AF ablation (PFA of RFA) in one centre.

#### PFA procedures:

Deep sedation / GA (LMA): propofol + sufentanil / remimazolam + ketamine

A pentaspline Farawave catheter (Boston Scientific)

Paroxysmal AF = PVI

Non-paroxysmal AF = PVI + PW + Mi

#### **RFA procedures:**

CARTO 3 mapping system (JaJ Medtech)

Ablation catheter SMARTTOUCH / QDOT (JaJ Medtech)

Ablation index 400 – 450 on the anterior wall, 300 – 350 on the posterior wall; high-power shortduration applications were avoided

Paroxysmal AF = PVI

Non-paroxysmal AF = additive lesions at the discretion of the operater





#### Methods

Blood samples:

T1: CFH, NGAL, and KIM-1 T2: CFH T3: CFH, NGAL, and KIM-1

The concentrations of CFH, NGAL and KIM-1were determined using the ELISA technique.



## **Results: Baseline characteristics**

| Characteristics                        | RFA group<br>(N = 23) | PFA group<br>(N = 47) | P - value |  |
|----------------------------------------|-----------------------|-----------------------|-----------|--|
| Paroxysmal AF, N (%)                   | 14 (60.9)             | 27 (57.4)             | 0.99      |  |
| Female gender, N (%)                   | 9 (39.1)              | 19 (40.4)             | 1.00      |  |
| Age, mean (SD), years                  | 67.4 (10.2)           | 62.9 (9.70)           | 0.08      |  |
| BMI, mean (SD), kg/m2                  | 28.4 (4.0)            | 29.9 (5.1)            | 0.19      |  |
| LA (PLAX), mean (SD), mm               | 43.3 (4.9)            | 41.8 (5.9)            | 0.30      |  |
| LVEF, mean (SD), %                     | 56.2 (12.1)           | 58.1 (6.0)            | 0.54      |  |
| Hypertension, N (%)                    | 13 (56.5)             | 35 (74.4)             | 0.21      |  |
| Diabetes mellitus, N (%)               | 1 (4.3)               | 10 (21.3)             | 0.09      |  |
| Coronary artery disease, N (%)         | 1 (4.3)               | 4 (8.5)               | 1.00      |  |
| Baseline creatinine, mean (SD), μmol/L | 91.7 (22.1)           | 88.8 (22.1)           | 0.44      |  |

#### Calculated glomerular filtration rate:

PFA group: 5 (10.6%) stage 2 and 2 (4.3%) stage 3 (chronic kidney disease (CKD)) RFA group: 1 (4.3%) stage 2 and 2 (8.7%) stage 3 (CKD)

#### Results

23 subjects underwent RFA and 47 PFA (*mean number of PF impulses 52.85 ± 18.37, range 32-100*).



# Results: CFH



e PFA cohort, a significant increase in CFH concentration was observed immediately after ablation w bid decline to baseline values one day after the procedure (93.4 ± 65.1 µg/mL vs. 2394.9 ± 1966.1 µg/mL v ± 68.5 µg/mL P < 0.001).

ignificant periprocedural increase in CFH concentrations was observed in the RFA cohort.

## Results: NGAL

| Biomarker              | RFA group<br>(N = 21) |              | P. value  | PFA group<br>(N = 47) |             | P - value |
|------------------------|-----------------------|--------------|-----------|-----------------------|-------------|-----------|
| Domarker               | T1                    | Т3           | P - value | T1                    | Т3          | r - value |
| NGAL, mean (SD), ng/mL | 108.3 ± 33.8          | 116.3 ± 32.2 | 0.49      | 98.6 ± 31.7           | 98.5 ± 38.1 | 0.78      |



## Results: KIM-1



mpared to baseline, **neither the PFA nor the RFA group showed a significant increase in NGAL or KIN** centrations postoperatively.

ACULIATIS

# Study limitations

#### imitations:

- 1. Serum concentration of biomarkers analysed *Urine analysis more sensitive*
- 2. Nonrandomised study
- 3. Lower mean number of PF applications More than 70 applications seem to have better sensitivity and specificity to predict haemolysis
- 4. Long-term follow-up data missing



# Conclusions

ompared to RFA, PFA leads to significant periprocedural haemolysis.

owever, no increase in markers of renal tubular injury was observed i cohort in which the total number of PF applications was less than 100