Right ventricular-pulmonary arterial coupling in patients on chronic haemodialysis with pulmonary hypertension determines patients with most advanced structural heart changes

Burýšková Salajová K., Valeriánová A., Mal 3. Interní klinika VFN a 1.LF UK

Negative consequences of chronic hemodialysis

- Low-resistance arteriovenous access as an access for hemodialysis
- Cyclic hyperhydration
- Endocrine-metabolic changes etc.

- More frequent cardiovascular diseases 븆
- Anaemia
- Cachectization, etc.

- Dyspnoea
- Fatigue
- Weakness etc.

CZecking heart failure in patients with advanced chronic kidney disease (Czecking HF-CKD) trial

- Cohort, observational, longitudinal study
- A group of haemodialysis patients from 6 cooperating haemodialysis centres
- Cross-sectional analysis of patients' inclusion visits

The aims of the analysis

- **1.** To analyze the relations between pulmonary hypertension (PH) and right ventricular-pulmonary arterial (RV-PA) coupling with arteriovenous access flow (Qa) and current hydration
- 2. To analyze structural heart changes associated with RV-PA uncoupling
- **3.** To reveal the prevalence, aetiology and severity of PH in the Czech haemodialysis population.

Methods

- Echocardiography with non-invasive assessment of haemodynamics
- Arteriovenous access flow measurement
- Bioimpedance analysis
- Basic laboratory tests

 All examinations were performed during one visit >24 hours after the previous haemodialysis

Definition of PH in our analysis

- Echocardiographically estimated pulmonary arterial systolic pressure (PASP) above 35 mmHg
- PASP= peak regurgitation gradient on the tricuspid valve + central venous pressure
- Indirect signs of PH: presence of right ventricular hypertrophy, left ventricular Dshape or dilatation of the truncus pulmonalis
 - PH classification: Mild (PASP 36-45 mmHg), Medium (PASP 46-60 mmHg) and Severe (PASP > 60 mmHg)

RV-PA COUPLING

Definition of RV-PA uncoupling in our analysis

- TAPSE/PASP ratio as a surrogate of RV-PA coupling
- Cut-off value 0.36 as suggested by the recent metanalysis of Anastasiou et al.
 - RV-PA coupling was analyzed only in patients with PH

Characteristics of the studied population

- Data of 336 patients were analyzed
- Age 69,5 (QR 19,6) years
- 92% of patients with arteriovenous dialysis access, 8% with dialysis catheter
- Duration of haemodialysis treatment 24 (QR 61) months
- The most common causes of CKD: diabetes mellitus (31%), arterial hypertension (23%) and polycystic kidney disease (7%)

Results...

Relation between PH and dialysis access flow and hydration status

	NO PH	PH	P-value
ialysis access flow nl/min)	935 (700)	1000 (890)	0.584
entral venous pressure nmHg)	4 (4)	9 (10)	<0.0001
verhydration to ktracellular water ratio	0.05 (0.13)	0.1 (0.15)	0.003

Relation between RV-PA coupling and dialysis access flow and hydration status

	RV-PA coupling	RV-PA uncoupling	P-value
ialysis access flow nl/min)	1020 (900)	765 (1050)	0.235
entral venous pressure nmHg)	8 (8)	18 (5)	<0.0001
verhydration to ktracellular water ratio	0.07 (0.16)	0.15 (0.2)	0.006

Structural heart changes in RV-PA uncoupling

RV-PA coupling	RV-PA uncoupling	P-value
56.14 (23.1)	76.33 (43.32)	0.009
59 (13)	42 (20.5)	0.001
20 (7.65)	27.5 (9)	0.002
11.55 (5)	19.5 (13)	0.001
45.3 ± 11.1	33.4 ± 13.2	0.001
	56.14 (23.1) 59 (13) 20 (7.65) 11.55 (5)	56.14 (23.1)76.33 (43.32)59 (13)42 (20.5)20 (7.65)27.5 (9)11.55 (5)19.5 (13)

EDVi- end-diastolic left ventricular volume indexed to BSA, EF LV- ejection fraction of the left ventricle, EDA- endastolic area of the right ventricle, ESA- end-systolic area of the right ventricle, FAC- fractional area

Haemodynamic consequences of RV-PA uncouplig

	RV-PA coupling	RV-PA uncoupling	P-value
CO (L/min)	5.78 (2.43)	4.21 (2.56)	0.001
COef (L/min)	4.60 (2.16)	3.44 (1.67)	0.0003
VEF (%)	59 (13)	42 (20.5)	0.001

Heart failure in PH and RV-PA uncoupling

	NO PH	PH
Heart failure (%)	37,5	79

	RV-PA coupling	RV-PA uncoupling
Heart failure (%)	52	88

PREVALENCE OF PH IN THE STUDIED POPULATION

- one quarter of patients suffered from RV-PA uncoupling

Conclusions

- The relation between dialysis access flow and the diagnosis of PH or RV-PA uncoupling is weak, but the relation of these two variables to fluid overload is stronger.
- RV-PA uncoupling is associated with more advanced structural heart changes in patients with PH.
- PH is present in about one-third of Czech haemodialysis population and among them, one quarter of patients suffered from RV-PA uncoupling. HF was the strongest contributor of PH in haemodialysis population.

Thank you for your attention!