## THE IMPORTANCE OF SCAR BORDER ZONE IN POST-MI VENTRICULAR TACHYCARDIA

Robert Rademaker

Department of Cardiology, Willem Einthoven Centre of Arrythmia Research and Management















## Border zones are always a source of problems



#### /T from non-reperfused myocardial infarction

- Macro re-entry circuits in areas <1.5mv BV with fixed block due to dense scar
- Stable circuits
- Entrainment, pace-mapping, (fractionated) late potentials



**Classical re-entry circuit** 



## Contemporary patients

- Early PCI and revascularization
- Early reperfusion yields:
  - 1. More patchy scar patterns
  - 2. Non-transmural scars
  - 3. Faster spontaneous VTs
- Larger scar border zones

Patchy, nontransmural

Continuous, dense



Wijnmaalen et al 2010 Piers et al 2016

В



1 mm

#### Our experience

- After substrate ablation: noninducibility of clinical monomorphic VTs
- But: faster VTs remaining when close to V-ERP coming from the scar border zones



1: Watanabe et al 2018

# Can we understand the border zone?



#### Two questions arise:

- 1. What exactly is the border zone as seen on voltage mapping?
- 2. What is the relationship between the border zone and fast VTs?



## What exactly is the scar border zone?

- The area between dense scar and normal, viable myocardium
- Lower limit:
  - The <0.5mV BV cutoff can accurately delineate transmural, dense scar



Reddy et al 2004 Glashan et al 2019

## What exactly is the scar border zone?

- The area between dense scar and normal, viable myocardium
- Upper limit:
  - The >1.5mV BV was derived from patients without structural heart disease and crude comparisons of LVA with dense scar on gross pathology
- All cut-offs are used uniformly



## What exactly is the scar border zone?

- Bipolar voltage is dependent on wall thickness
- Same cut-offs?



## MRI-validated cut-offs

- Segmentation of high resolution LGE-MRI to determine fibrosis
- Integration with bipolar voltage maps
- Derivation of optimal cutoffs in patients with remodeled and nonremodeled LV's



Sramko et al 2019 (IKEM)

## MRI-validated cut-offs

- Patients with LVEF>47%
  - >3.0mV BV
- Patients with LVEF<47%</li>
  >2.1mV BV
- Of note, 97/99% functional substrate targets were in area
   <2.1/3.0mV compared to 59% in <1.5mV BV</li>



Sramko et al 2019 (IKEM)



#### Two questions arise:

- 1. What exactly is the border zone as seen on voltage mapping?
  - 1. For patients with LV-remodeling: >0.5 and <2.1mV BV
  - 2. For patients without LV remodeling >0.5 and <3.0mV BV
- 2. What is the relationship between the border zone and fast VTs?



#### Two questions arise:

- 1. What exactly is the border zone as seen on voltage mapping?
  - 1. For patients with LV-remodeling: >0.5 and <2.1mV BV
  - 2. For patients without LV remodeling >0.5 and <3.0mV BV
- 2. What is the relationship between the border zone and fast VTs?



# <sup>-</sup>unctional conduction block

- Heterogeneous properties of infarcted region:
  - Source-sink mismatch
  - Ion channel changes
  - Gap junctional changes
- Different local refractory periods



Source-sink mismatch

## <sup>-</sup>unctional conduction block

- Border zone contains strands of preserved myocardium
- Outer loop determines the VTCL (Tung)
- Very fast VTs close to the refractory period

Initiation of circuit



## Methods

- Consecutive post-MI VT ablation patients were included
- Residual ischemia was excluded
- VTCL < VRP + 30ms = fast VT</p>
- Border zones were measured after exclusion of valve areas
- Presence of fast VTs, VTCL and VT
   recurrence was correlated with border
   zone sizes





## Patient characteristics

- 138 patients (68±8 years, LVEF
   35%±10%)
- 86% classified as LV-remodeled based on echo
- 62% underwent early reperfusion therapy

- Presenting VTCL 386±86ms
- Mean V-ERP 260±29ms
- Retrospectively: 20% patients presented with ≥1 fast VT



## Procedural data

- 96% of patients was inducible for ≥1 VT during the procedure (median 2 [1 – 3])
- After last RF 57% was inducible ≥1 VT, 60/79 for only fast VTs
- At the time: fast VTs near V-ERP were not targeted

#### Border zone sizes results:

1. Border zone sizes and fast *presenting VTs* 

2. Border zone sizes and fast *remaining VTs after ablation* 

3. Border zone sizes and VT recurrence



Low voltage area Presenting with ≥1 fast VT n=27 Presenting with P-v only non-fast VT n= 111

V

No differences in size of LVA (all cut-offs)

| Low voltage area         | Presenting<br>with ≥1 fast<br>VT n=27 | Presenting with<br>only non-fast VT<br>n= 111 | P-v |
|--------------------------|---------------------------------------|-----------------------------------------------|-----|
| BV <0.5mV <b>,</b> %     | 4 [1 – 13]                            | 7 [2 – 14]                                    | 0.1 |
| BV <1.5mV <b>,</b> %     | 27 [16 – 39]                          | 27 [26 – 47]                                  | 0.8 |
| BV <2.1/3.0mV <b>,</b> % | 44 [31 – 50]                          | 37 [26 – 47]                                  | 0.2 |



|                                                    | Low voltage area                                          | Presenting<br>with ≥1 fast<br>VT n=27 | Presenting with<br>only non-fast VT<br>n= 111 | P-v |
|----------------------------------------------------|-----------------------------------------------------------|---------------------------------------|-----------------------------------------------|-----|
|                                                    | BV <0.5mV <b>,</b> %                                      | 4 [1-13]                              | 7 [2 – 14]                                    | 0.1 |
| No differences in size of LVA (all cut-offs)       | BV <1.5mV, %                                              | 27 [16 – 39]                          | 27 [26 – 47]                                  | 0.8 |
|                                                    | BV <2.1/3.0mV, %                                          | 44 [31 – 50]                          | 37 [26 – 47]                                  | 0.2 |
| No difference in border zone conventional cut-offs | Conventional BV<br>border zone (o.5-<br>1.5mV) <b>,</b> % | 22 [12 – 26]                          | 17 [11 – 23]                                  | 0.1 |



|                                                    | Low voltage area                                            | Presenting<br>with ≥1 fast<br>VT n=27 | Presenting with<br>only non-fast VT<br>n= 111 |            |
|----------------------------------------------------|-------------------------------------------------------------|---------------------------------------|-----------------------------------------------|------------|
|                                                    | BV <0.5mV, %                                                | 4 [1-13]                              | 7 [2 – 14]                                    | 0.1        |
| No differences in size of LVA (all cut-offs)       | BV <1.5mV <b>,</b> %                                        | 27 [16 – 39]                          | 27 [26 – 47]                                  | 0.8        |
|                                                    | BV <2.1/3.0mV <b>,</b> %                                    | 44 [31 – 50]                          | 37 [26 – 47]                                  | 0.2        |
| No difference in border zone conventional cut-offs | Conventional BV<br>border zone (0.5-<br>1.5mV), %           | 22 [12 – 26]                          | 17 [11 – 23]                                  | 0.1        |
| Larger border zone using MRI validated cut-offs    | MRI validated<br>border zone(0.5 —<br>2.1/3.omV) <b>,</b> % | 32 [26 – 42]                          | 26 [19 – 36]                                  | <u>0.0</u> |
|                                                    |                                                             |                                       |                                               |            |



## Border zone sizes results:

- 1. Border zone sizes and fast *presenting VTs* 
  - 1. Patients with spontaneous fast VTs have larger scar border zones when using MRI validated cut-offs (0.5>2.1/3.0mV BV)

2. Border zone sizes and fast *remaining VTs after ablation* 

3. Border zone sizes and VT recurrence



## Remaining fast VTs after ablation

| 43% of all patients remained inducible for fast VTs |  |
|-----------------------------------------------------|--|
| (mean VTCL 257±32ms)                                |  |

Inducible for <u>fast-VT</u> after ablation

(n=6o)

Low voltage area

Inducible for only other VT after ablation

(n=19)

Ň

## Remaining fast VTs after ablation

 43% of all patients remained inducible for fast VTs (mean VTCL 257±32ms)

Again, no differences when using conventional cutoffs for both LVA or border zone

|                                                           | Inducible for<br><u>fast-VT</u> after<br>ablation | Inducible for<br>only other VT<br>after ablation | F |
|-----------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|---|
| Low voltage area                                          | (n=6o)                                            | (n=19)                                           | ۷ |
| BV <o.5mv<b>, %</o.5mv<b>                                 | 8 [2 – 16]                                        | 9 [21 – 39]                                      | С |
| BV <1.5mV <b>,</b> %                                      | 31 [22 – 44]                                      | 32 [22 – 39]                                     | С |
| BV <2.1/3.0mV <b>,</b> %                                  | 46 [34 – 55]                                      | 41 [26 – 48]                                     | С |
| Conventional BV<br>border zone (0.5-<br>1.5mV) <b>,</b> % | 22 [15 – 28]                                      | 20 [12 – 31]                                     | C |

## Remaining fast VTs after ablation

 43% of all patients remained inducible for fast VTs (mean VTCL 257±32ms)

• Again, no differences when using conventional cutoffs for both LVA or border zone

 Larger border zones when inducible for fast VTs using MRI cut-offs

|                                                           | Inducible for<br><u>fast-VT</u> after<br>ablation | Inducible for<br>only other VT<br>after ablation | F |
|-----------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|---|
| Low voltage area                                          | (n=6o)                                            | (n=19)                                           | ۷ |
| BV <0.5mV, %                                              | 8 [2-16]                                          | 9 [21 - 39]                                      | С |
| BV <1.5mV <b>,</b> %                                      | 31 [22 - 44]                                      | 32 [22 – 39]                                     | С |
| BV <2.1/3.0mV <b>,</b> %                                  | 46 [34 – 55]                                      | 41 [26 – 48]                                     | С |
| Conventional BV<br>border zone (0.5-<br>1.5mV) <b>,</b> % | 22 [15 – 28]                                      | 20 [12 – 31]                                     | С |
| MRI validated border<br>zone (0.5—<br>2.1/3.0mV), %       | 35 [27 – 43]                                      | 26 [20 – 37]                                     | С |

## Border zone sizes results:

- 1. Border zone sizes and fast *presenting VTs* 
  - 1. Patients with spontaneous fast VTs have larger scar border zones when using MRI validated cut-offs (0.5>2.1/3.0mV BV)

- 2. Border zone sizes and fast *remaining VTs after ablation* 
  - 1. Larger scar border zones in patients inducible for fast VTs, but only the MRI validated cut-offs

#### Border zone sizes and VT recurrence

- Median follow-up 26 months [8 – 47], 33% VT recurrence
- Median VTCL 360ms [273 400]
- 8/27 patients who presented with ≥1 fast VT, also recurred with a fast VT VTCL 270ms [243 – 300]



## Summary of results

- 1. Twenty percent of post-MI patients referred for VT ablation presented with at least one fast VT
- 2. Patients who presented with at least one fast VT had larger border zones
- 3. Patients who remained inducible for fast VTs after ablation of all known substrate had larger border zones
- 4. Patients with larger border zones had a higher VT recurrence rate

#### Discussion

- The MRI validated cut-off appear to be superior to determine low voltage areas and scar border zones
- Larger border zones seem to harbor VT substrate not reached by current ablation techniques
- Because functional block only appears during shorter cycle lengths, these arrythmias might be difficult to control via ablation



## Strange things happen in the border zone



Table 1. Baseline characteristics

|                                     | All (n=138)    |
|-------------------------------------|----------------|
| Age                                 | 68±8.4         |
| Male                                | 118 (86)       |
| Hypertension                        | 49 (36)        |
| Diabetes mellitus                   | 21 (15)        |
| History of AF                       | 37 (27)        |
| QRS-duration, ms                    | 113 [95 - 146] |
| LVEF, %                             | 35±10          |
| Remodeled LV*                       | 119 (86)       |
| ICD before ablation                 | 107 (78)       |
| Prior PCI                           | 41 (30)        |
| Prior CABG                          | 32 (23)        |
| Acute reperfusion therapy           | 86 (62)        |
| Infarct location by coronary        |                |
| dependent area                      |                |
| LAD                                 | 47 (34)        |
| RCx                                 | 18 (13)        |
| RCA                                 | 73 (53)        |
| Medications at admission            |                |
| ACE-inhibitor/ARB                   | 112 (81)       |
| Beta-blockers                       | 104 (75)       |
| Amiodarone                          | 54 (39)        |
| Presenting arrythmia**              |                |
| ≥1 Fast VT***                       | 27 (20)        |
| Other tolerated VT                  | 70 (51)        |
| Other non-tolerated VT              | 41 (29)        |
| VT clinical presentation            |                |
| Mean presenting VT cycle length, ms | 386±86         |
| VTCL patients using amiodarone      | 428±86         |
| VTCL patient not using amiodarone   | 359±75         |

\*LVEF <47% or LVES >50 ml/m2

\*\* Retrospectively after V-ERP determination

\*\*\*VTCL= ≤ V-ERP + 30ms,

#### Table 2: Procedural data

|                                                      | All (n=138)     |
|------------------------------------------------------|-----------------|
| Mapping points                                       | 288±200         |
| Surface area after removal of AMA, cm <sup>2</sup>   | 200±52          |
| LV-volume, cm <sup>3</sup>                           | 224 [169 - 300] |
| Procedural time, min                                 | 200 [76 – 251]  |
| RV V-ERP**                                           | 259±29          |
| Using amiodarone, ms                                 | 273±28          |
| Not using amiodarone, ms                             | 251±26          |
| Inducible for any VT during procedure                | 132 (96)        |
| Number of VTs inducible                              | 2 [1 – 3]       |
| VTCL induced, ms*                                    | 365±81          |
| Inducible for fast VT ***                            | 15 (11)         |
| VTCL fast VT, ms                                     | 265±18          |
| Inducible after last RF application                  | 79 (57)         |
| VTCL induced, ms                                     | 281±61          |
| Inducible for fast VT after last RF application***   | 60 (44)         |
| VTCL fast VT, ms                                     | 257±32          |
| VTCL other VT, ms                                    | 356±72          |
| Low voltage areas                                    |                 |
| BV <0.5mV, %                                         | 7 [2 – 13]      |
| BV <1.5mV, %                                         | 27 [16 – 37]    |
| BV <2.1/3.0mV, %                                     | 37 [27 – 48]    |
| Conventional BV border zone (0.5-1.5mV), %           | 18 [11 – 24]    |
| MRI validated border zone total (0.5 – 2.1/3.0mV), % | 27 [20 - 38]    |
| Mana MTCL induced and activations                    |                 |

\* Mean VTCL induced per patient used