ENOTYPE, PHENOTYPE AND OUTCOMES OF ATIENTS WITH HYPERTROPHIC ARDIOMYOPATHY REFERRED FOR VT ABLATION

<u>UGUSTO MERETTA</u>, NICOLAS SCHAERLI, Y. KIMURA, H. WIJNMAALEN, R. VD GEEST, P. LOPEZ SANTI, 1. BOOTSMA, K. ZEPPENFELD

EPIDEMIOLOGY

- Prevalence of unexplained hypertrophy is estimated to be 1/500 adults
- Equal distribution per sex
- HCM presents AD inheritance with variable expressivity

Table 1. Prior Estimates of HCM Prevalence With Echocardiography in 6 Populations

First Author (Ref. #)	Year	N	Age (yrs)	% Male	Maximal LV Thickness (mm)	Reported Prevalence (%)	Study Subjects
Maron etal. (4)	1995	4,111	25- 35	71	17 ± 2	0.17	Random sampling from urban general population (CARDIA study)
Hada etal. (6)	1987	1,584	47*	76	17 ± 3	0.17	Annual health examinations
Maron etal. (8)	1999	15,137	57*	48	21 ± 4	0.19	Mobile echocardiography in rural communities
Maron etal. (9)	2004	3,501	60	50	21 ± 3	0.23	American Indian tribal communities [†]
Zou etal. (5)	2004	8,080	52	69	17 ± 6	0.16	Random sample from 9 communities in China
Maro etal. (10)	2006	6,680	55	68	21 ± 0.4	0.19	East African (Tanzanian) district regional hospital

DIAGNOSTIC CRITERIA

- Adults → LV WT ≥ 15 mm, anywhere in the ventricle, no apparent cause for hypertrophy *
- Children \rightarrow Actual \geq 2 Z-score deviation in LV WT *
- Class IV/V mutation carriers
 - No phenotype \rightarrow patient at risk for development

GENETICS

- 30-60% patients have identified LP/P mutation
- Most frequent genetic mutations are Sarcomeric mutations
- Incomplete penetrance

CENTRAL ILLUSTRATION Hypertrophic Cardiomyopathy: Overall Design and Findings

2,755 Hypertrophic Cardiomyopathy Patients 44 sites 6 countries North America and Europe

Neubauer, S. et al. J Am Coll Cardiol. 2019;74(19):2333-45.

SARCOMERIC PROTEIN CODING GENES

rke MA, Cook SA, Seidman JG, Seidman CE. Clinical and Mechanistic Insights Into the Genetics of Cardiomyopathy. J Am Coll Cardiol. 2016

GENETICS

SHaRe registry

- 2763/4519 patients genotyped → 1279 had a Sarcomeric mutation
- MYBPC3 43% (+ 14% with founder mutations)
- MYH7 32%

VA INCIDENCE

- Recent large population studies report SCD 1.2-1.5%/yr
- Risk assessment for SCD should be lead by periodical reevaluation in patients care
- Current risk scores don't account for new markers
 - Moreover, no consensus on best LGE quantification method

VA INCIDENCE

- EPS induced VA is non-specific and no
- No RCT on AAD to prevent SCD
- Historical belief \rightarrow SCD in HCM is relat
- In patients w/ ICD
 - SMVT is the MOST COMMON VA
 - ATP is successful in ~ 70% episodes
- RFCA in patients w/ recurrence despit

B 10	0		-	-		-		
(%)	-	SARG	C +					
5		SAR	C —					~
Proportion Free of Ventricular Arrhythmias (%)	-	SAR	C VUS					
ar Arrh								
tricula 50	,							
Ven								
ee of	Lo	og–rai	nk					
n Fr	P	< 0.00)1					
ê	SA	RC + v	vs SAR	C -	P<0.0	001		
od	SA	RC VU	IS vs S	ARC -	P=0.0)6		
		RC + v	vs SAR	C VUS	P=0.1	17		
C	0	10	20	30	40	50	60	
t				Age	(years)			
SARC +	1275	1267	1190	1056	860	587	326	1
SARC -	1230	1226	1191	1128	1025	853	568	2
SARC VUS	252	248	235	213	190	133	79	
				Patier	nts at ris	sk 👘		

OUR DATA

Ŵ

METHODS

- Consecutive patients from the Leiden VT registry referred for RFCA for VA
- Baseline: index VT ablation
- From 2011 up to 2023 \rightarrow 1063 patients referred for VT ablation
 - 9 ♂ patients presented HCM phenotype

METHODS

- Medical records, family history, AAD, ECG, ICD registries
- Multimodal imaging evaluation
 - Echocardiographic evaluation
 - MS Contrast enhanced Cardiac CT analysis
 - Contrast enhanced MRI
- Electroanatomic map, VT ablation procedures and bail out strategies

RESULTS

Ŵ

BASELINE CHARACTERISTICS

Population	
Age at ablation	59 (IQR 45-61) years
Age at HCM diagnosis	40 (IQR 27-53) years
Family history HCM	4 (44.4%)
Family history SCD	4 (44.4%)
Prior Syncope	5 (55.5%)
OHCA	3 (33.3%)
Betablocker	8 (88.8%)
Failed Amiodarone	6 (66.6%)
Failed Sotalol	4 (44.4%)
Failed Amio + class I	4 (44.4%)
Device at ablation	8/9 (88.8%)
1ary prevention	4/9 (44.4%)
S-ICD	2/9 (22.2%)
Dual-chamber ICD	6/9 (66.6%)
Pre Ablation ATP (6M)	8986 therapies (IQR 9-17.962)
Pre Ablation Shocks (6M)	8 shocks (IQR 6-9)
VT episodes (6M)	20 episodes (IOR 2-900)

54 CMP genes tested i all patients: 6/9 patients with Class mutation all in MYBPC3

ΓTE

- Median EF → 42% (IQR 35-52%)
- LV mass index \rightarrow 253 g/m² (IQR 217 281)
- Septal WT → 20 mm (IQR 16,5 22,1)
- Posterior WT \rightarrow 12,2 mm (IQR 10 15)
- LAVI → 44,4 ml/m2 (IQR 38,3 48,4)
- LV GLS → 7,5% (IQR 6-13.4)
- No LVOT > 50 mmHg at baseline

 $\frac{\text{HCM PHENOTYPE}}{\text{Septal Hyp} → 6 pt.}$ Global Hyp → 2 pt. AA → 1 p.

CE MSCT

_GE DISTRIBUTION

<u>LGE – MRI</u> Median LV enhan mass 25 % IQR (5-44 %)

NDEX VT ABLATION

- 8/9 patients inducible for SMVT
 Median procedural VTs 4 (IQR 3-5)
- Median procedural time 302 min
- VT substrate IVS intramural in 7
- Median RF applications 22 (IQR 11-66)
- Median RF time 769 sec
- Epicardial map in 2/9 patients

AIL OUT STRATEGIES (MYBPC3+)

- Ablation with half saline in 4/9 index VT ablations (+ 3 re ablations)
- TCEA attempted in 3 patients Bipolar ablation
- Ablation with ECMO hemodynamic support
- SGB in 2 patients
- SBRT in 2 patients
- Surgical substrate resection in 2 patients

CONCLUSIONS

CONCLUSIONS

- 1% of patients referred for CA of SMVT to a high-volume center had a HCM phenotype
- MYBPC3 variant was identified in 67% with predominant septal compromise
- VT free survival appears to be particularly poor in MYBPC3 variant carriers despite all treatment modalities
- Early screening for advanced heart failure management including heart transplantation is important.

FHANK YOU

N