Dlouhodobé mechanické srdeční podpory v léčbě pokročilého srdečního selhání

prof. MUDr. Ivan Netuka, Ph.D.

Klinika kardiovaskulární chirurgie

Institut klinické a experimentální medicíny, Praha

Impact of advancing technology and best practices

Based on published data from multicenter experience and separate studies, which may involve different patient populations and other variables. Not a head to head comparison. Data presented for informational purposes only.

*82% 2-year survival for adult heart transplants patients between 2009 and 2015¹

References: 1. Lund LF, Khush KK, Cherikh WS, et al. The Registry of the International Society for Heart and Lung Transplantation: Thirty-fourth Adult Heart Transplantation Report—2017; Focus theme: allograft ischemic time. *J Heart Lung Transplant*. 2017;36:1037-1046. **2.** Mehra MR, Uriel N, Naka Y, et al. A Fully Magnetically Levitated Ventricular Assist Device-Final Report. N Engl J Med. 2019. **3.** Rogers JG, Pagani FD, Tatooles AJ, et al. Intrapericardial Left Ventricular Assist Device for Advanced Heart Failure. *N Engl J Med*. 2017;376:451-60. **4.** Slaughter MS, Rogers JG, Milano CA, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. *N Engl J Med*. 2009;361:2241-2251. **5.** Rose EA, Gelijns AC, Moskowitz AJ, et al. Long-term use of a left ventricular assist device for end-stage heart failure. *N Engl J Med*. 2001 Nov 15;345(20):1435-43.

A New Survival and Functional Status Benchmark with Contemporary LVAD Therapy

Netuka I. et al. *J Am Coll Cardiol. 2015;66:2579-2589.* Mehra MR. et al. *N Engl J Med. 2019;380:1618-1627.*

5-year survival of 58.4% and excellent functional capacity on the centrifugal flow HeartMate 3 pump in advanced HF patients *irrespective of therapeutic intent*

Mehra MR et al. JAMA 2022; 328(12):1233-1242.

Full Cohort

8

Primary End Point (ITT)

Survival at 2 years free of disabling stroke (>3 mRS) or

reoperation to replace or remove a malfunctioning device

mRS denotes modified Rankin Score; HR, hazard ratio; CI, confidence interval

Principal Secondary End Point

RR denotes relative risk; CI, confidence interval; HR, hazard ratio

Stroke

Freedom from All Stroke

HR denotes hazard ratio; CI, confidence interval; RR, relative risk; EPPY, events per patient year

Gastrointestinal Bleeding

Freedom from Gastrointestinal Bleeding

First 5-year multicentric clinical trial experience with the HeartMate 3 left ventricular assist system

Ivan Netuka, MD, PhD,^{a,1} Yuriy Pya, MD,^b Daniel Zimpfer, MD,^c Evgenij Potapov, MD,^d Jens Garbade, MD, PhD,^e Vivek Rao, MD, PhD,^f Michiel Morshuis, MD,^g Friedhelm Beyersdorf, MD,^h Silvana Marasco, PhD, FRACS,ⁱ Poornima Sood, MD, MBA,^j Carlo Gazzola, BSc,^j and Jan D. Schmitto, MD, PhD^{k,1}

JAMA | Original Investigation

Five-Year Outcomes in Patients With Fully Magnetically Levitated vs Axial-Flow Left Ventricular Assist Devices in the MOMENTUM 3 Randomized Trial

Mandeep R. Mehra, MD, MSc; Daniel J. Goldstein, MD; Joseph C. Cleveland, MD; Jennifer A. Cowger, MD, MS; Shelley Hall, MD; Christopher T. Salerno, MD; Yoshifumi Naka, MD, PhD; Douglas Horstmanshof, MD; Joyce Chuang, PhD; AiJia Wang, MPH; Nir Uriel, MD, MSc

Mehra, Goldstein, Cleveland et al, JAMA 2022; 328(12):1233-1242.

Fully magnetically centrifugal left ventricular assist device and long-term outcomes: the ELEVATE registry

Jan D. Schmitto¹*[†], Steven Shaw ()^{2†}, Jens Garbade ()³, Finn Gustafsson ()⁴, Michiel Morshuis ()⁵, Daniel Zimpfer ()⁶, Jacob Lavee ()⁷, Yuriy Pya⁸, Michael Berchtold-Herz ()⁹, AiJia Wang¹⁰, Carlo Gazzola¹⁰, Evgenij Potapov ()^{11†}, and Diyar Saeed ()^{12†}; on behalf of the ELEVATE Registry Investigators

The "Base Case" of Continuous Inotropic Support Median Survival<12 months

- 1. Circulation: Heart Failure 8.5 (2015): 880-886.
- 2. Journal of Cardiac Failure 27.9 (2021): 974-980.
- 3. The Journal of Heart and Lung Transplantation 39.7 (2020): 721-724.
- 4. Journal of Cardiac Failure 28.12 (2022): 1683-1691.

Contemporary Outcomes

Study	Study type	Time period	Patient population	Survival
¹ Hashim et al.	Retrospective cohort, single center	2007- 2013	197 ambulatory patients on iv inotropes, 57% palliative (8% declined LVAD therapy), 30% bridge therapy	Median survival: 9.0 months (IQR: 3.1–37.1), actuarial 1-year survival of 47.6%, and 2-year survival of 38.4% for palliative group
²Rao et al.	Retrospective cohort, single center	2010- 2016	373 ambulatory patients on iv inotropes, 34% palliative, 66% bridge therapy	Mean survival: 6.2 months (SD 6.6) for palliative group, 8.6 months (SD 9.3) for bridge group who did not receive surgical therapy
³ Fendler et al.	Randomized stepped-wedge trial, multi- center	2015- 2017	248 patients being evaluated for DT-LVAD, 15% declined, 15% deemed ineligible	1-year survival 50% for decliners , 60% for ineligible patients
^₄ Sami et al.	Retrospective cohort, 2 centers	2015- 2019	248 ambulatory patients, on palliative iv inotropes	Median survival: 5.9 months (IQR 1.7–15.8), 1-year survival of 30%

Improvement in ICD, Palliative Care, Medical Therapy

Mehra, Nayak Desai. JACC HF 2023 (online)

Rose E et al N Engl J Med 2001; 345: 1435

Mehra MR, Nayak A, Desai AS. JACC Heart Fail. 2023;11:1011-1017

JAMA | Original Investigation

Five-Year Outcomes in Patients With Fully Magnetically Levitated vs Axial-Flow Left Ventricular Assist Devices in the MOMENTUM 3 Randomized Trial

Mandeep R. Mehra, MD, MSc; Daniel J. Goldstein, MD; Joseph C. Cleveland, MD; Jennifer A. Cowger, MD, MS; Shelley Hall, MD; Christopher T. Salerno, MD; Yoshifumi Naka, MD, PhD; Douglas Horstmanshof, MD; Joyce Chuang, PhD; AiJia Wang, MPH; Nir Uriel, MD, MSc

Cause of death	Difference, % (95% CI) %ª	Hazard ratio (95% CI)	Favors centrifugal-flow pump	Favors axial-flow pump	<i>P</i> value ^b
Hemocompatibility-related event (device thrombosis, stroke, bleeding)	-6.8 (-10.0 to -3.6)	0.33 (0.20-0.55) —			<.001
Heart failure	0.6 (-2.9 to 4.1)	1.01 (0.67-1.53)			.95
Infection	-0.1 (-2.8 to 2.6)	0.92 (0.54-1.59)			.77
Other ^c	0.0 (-4.1 to 4.0)	0.94 (0.66-1.33)			.72
		Г		1	
		0.2	1	. 2	
			Hazard ratio (95% (J)	

Mehra, Goldstein, Cleveland et al, JAMA 2022; 328(12):1233-1242.

Mehra MR, Crandall DL, Gustafsson F, et al., Eur J Heart Fail. 2021;23(7):1226-1237

Aspirin and Hemocompatibility Events with a Left Ventricular Assist Device in Advanced Heart Failure The <u>ARIES-HM3</u> Clinical Trial

Mandeep R. Mehra, Ivan Netuka, Nir Uriel, Jason N. Katz, Francis D. Pagani, Ulrich P. Jorde, Finn Gustafsson, Jean M. Connors, Peter Ivak, Jennifer Cowger, John Ransom, Aditya Bansal, Koji Takeda, Richa Agarwal, Mirnela Byku, Michael M. Givertz, Abbas Bitar, Shelley Hall, Daniel Zimpfer, J David Vega, Manreet K. Kanwar, Omar Saeed, Daniel J. Goldstein, Rebecca Cogswell, Farooq H. Sheikh, Matthew Danter, Yuriy Pya, Anita Phancao, John Henderson, Daniel L. Crandall, Kartik Sundareswaran, Edward Soltesz and Jerry D. Estep

On Behalf of the ARIES Investigators

ARIES

Can aspirin be safely excluded from the antithrombotic regimen (which includes Vitamin-K Antagonists) in HM3 LVAD Patients?

Mehra MR, Crandall DL, Gustafsson F, et al., Eur J Heart Fail. 2021;23(7):1226-1237 Thomas, The Structure of Resting and Activated Platelets. Platelets 4th Ed. 2019, Pages 47-77

International, Multicenter, Prospective, Randomized, Double-blind, Placebo-controlled Study

HYPOTHESIS

Exclusion of aspirin from the antithrombotic regimen of patients supported with the HM3 LVAD will not adversely affect safety or efficacy of the HM3 and may reduce non-surgical bleeding

Global Study of 51 centers in 9 countries

End Points

Primary: Survival free of any non-surgical^a major hemocompatibility related adverse event^b at 1-year post implant ^a >14 days post implant. ^bAny Stroke, Pump Thrombosis, Major Bleeding, and Arterial Peripheral Thromboembolism

- The final sample size provided >90% power to assess the primary end point for non-inferiority
- Non-inferiority met if the lower boundary of the one-sided 97.5% confidence limit was greater than the non-inferiority margin (-10%)

Principal Secondary: All Non-surgical Bleeding

Primary End Point Analysis

All sensitivity analyses concur with the primary analysis, including randomized population, worst case allocation of withdrawals, and impact of transition to open label

Principal Secondary Endpoint

Safety Endpoints

No Increase in Thrombosis

No Difference in Mortality

HR [95% CI]: 0.90 [0.50 - 1.62] P=0.71

0.01

0.1

Relative risk (95% CI)

10

JAMA | Original Investigation

Aspirin and Hemocompatibility Events With a Left Ventricular Assist Device in Advanced Heart Failure The ARIES-HM3 Randomized Clinical Trial

Mandeep R. Mehra, MBBS, MSc; Ivan Netuka, MD, PhD; Nir Uriel, MD, MSc; Jason N. Katz, MD, MS; Francis D. Pagani, MD, PhD; Ulrich P. Jorde, MD; Finn Gustafsson, MD, PhD, DMSci; Jean M. Connors, MD; Peter Ivak, MD, PhD; Jennifer Cowger, MD, MS; John Ransom, MD; Aditya Bansal, MD; Koji Takeda, MD, PhD; Richa Agarwal, MD; Mirnela Byku, MD, PhD; Michael M. Givertz, MD; Abbas Bitar, MD; Shelley Hall, MD; Daniel Zimpfer, MD, PhD; J. David Vega, MD; Manreet K. Kanwar, MD; Omar Saeed, MD, MSc; Daniel J. Goldstein, MD; Rebecca Cogswell, MD; Farooq H. Sheikh, MD; Matthew Danter, MD; Yuriy Pya, MD, DMSc; Anita Phancao, MD; John Henderson, MS; Daniel L. Crandall, PhD; Kartik Sundareswaran, PhD; Edward Soltesz, MD; Jerry D. Estep, MD; for the ARIES-HM3 Investigators

Rate of Non-surgical Bleeding Events

Vitamin-K Antagonist Management

Target Therapeutic Range INR 2.0 - 3.0

Time in Therapeutic Range (TTR) 56%

JAMA. 2023;330:2171-2181.

TTR – time in therapeutic range

Rosendaal method of linear interpolation

Bleeding Rate by TTR Increments

Incremental improvement of 10% above the median of 56% trends in a significant reduction in bleeding rate

Connors/Netuka/Mehra. ARIES VKA Analysis (Preview, ISHLT Thursday April 11, 2024)

Direct oral anticoagulants and anticoagulants and LVADs

- Vitamin-K Antagonist (VKA) remains suboptimal and resource intensive
- Direct oral anticoagulants (DOACs) alternative with a potential of better compliance and no additional monitoring for dose adjustments

A Prospective Randomized Trial of Direct Oral Anticoagulant Therapy with A Fully Magnetically Levitated LVAD

The DOT-HM3 Study

Ivan Netuka, Zuzana Tucanova, Peter Ivak, Stanislav Gregor, Dushan M. Kolesar, Tomas Marek, Vojtech Melenovsky, Jana Binova, Zora Dorazilova, Marketa Hegarova, Martina Podolec, Hynek Riha MD, Jean M. Connors and Mandeep R. Mehra

DOT HM 3 Trial Rationale

- Direct Oral Anticoagulants (DOACs) became a viable alternative to VKA in scenarios of non-valvular Atrial Fibrillation or Deep Vein Thrombosis
 - However, their risk-benefit ratio can be precarious as they are not necessarily safe in scenarios of valvular atrial fibrillation or with Mechanical Prosthetic Valves
- Substantial concern exists with use of DOACs in patients with LVADs
 - A small study using Dabigatran in patients with an older generation LVAD, the HeartWare HVAD, demonstrated increased thrombotic complications (Andreas M. et al. *Circ Heart Fail. 2017*)
- Can the observed Thromboresistance with the HeartMate 3 LVAD allow

judicious use of Direct Oral Anticoagulants in selected conditions?

Direct Oral Anticoagulant Therapy With the HeartMate 3 LVAD (DOT-HM3) Trial

Study Aim

• Prospective, single-center, randomized, safety and feasibility trial of apixaban anticoagulation in patients on HeartMate 3 LVAS (*Clinical Trials.gov NCT04974684*)

Primary Endpoint

- The primary <u>safety endpoint</u> was survival-free of pump thrombosis, disabling stroke, or major bleeding at 3 months post-randomization.
- If no safety concerns, clinical outcomes were mandated at completion of 6-month follow-up.
- Heart transplantation was considered success, and other withdrawals, a failure.

Funding: Investigator-initiated study supported by an institutional grant by Abbott (USA). The sponsor was <u>not involved</u> in the design, execution, analysis or presentation and publication decisions of the study

DOT-HM 3 Study

Entry Criteria

- Minimum 3 months post HeartMate 3 implant
- Stable, ambulatory and home discharged
- Consent provided

Key Exclusion Criteria

- Any Thromboembolism or Major Bleeding after implant
- Weight \leq 60 kgs. or age \geq 80 years
- Poor kidney function with serum creatinine ≥ 221umol/L or creatinine clearance < 0.042 mL/s
- Mechanical valve or ancillary MCS
- Hemodynamically significant carotid stenosis
- Need for antiplatelet therapy for reasons other than LVAD therapy
- History of hyper-/hypo- coagulable disorder
- Aspirin or Apixaban hypersensitivity

*ARIES trial results unknown at inception of trial

HeartMate 3 LVAS

INR 2.0-3.0 + ASA 100mg*

**No study power assigned in this exploratory study and ITT principles used in describing outcomes

Clinical Outcomes (6-months)

CLINICAL OUTCOME (6-months)	APIXABAN + 100mg ASA N=15	APIXABAN Alone N=16	Warfarin + 100 mg ASA N=14
Cumulative Follow-up (pt/days)	2338	2656	2338
Primary outcome: Patient survival-free of pump thrombosis, disabling stroke, or major bleeding (HTx considered success and other withdrawal a failure)	13/15 (86.7%)	15/16 (93.7%)	12/14 (85.7%)
Individual Components			
Thromboembolism (pump malfunction, stroke or arterial thromboembolism) at 6 months	0	0	0
Major bleeding	1 (Gastrointestinal)	0	2* (uterine)
Withdrawals (without a primary event or transplantation)	1	1	1
Heart transplants	4	2	1

* 2 uterine bleeding events occurred in 1 patient (treated as a single count in the primary endpoint)

A Prospective Randomized Trial of Direct Oral Anticoagulant Therapy with A Fully Magnetically Levitated LVAD: The DOT-HM3 Study

Ivan Netuka, MD, PhD¹, Zuzana Tucanova, MD¹, Peter Ivak, MD, PhD¹, Stanislav Gregor, PharmD¹, Dushan Michael Kolesar, MD¹, Tomas Marek, MD¹, Vojtech Melenovsky, MD¹, Jana Binova, MD¹, Zora Dorazilova, MD¹, Marketa Hegarova, MD, PhD¹, Martina Podolec, MD¹, Hynek Riha MD, PhD¹, Jean M. Connors, MD², Mandeep R. Mehra, MD, MSc²

¹Institute for Clinical and Experimental Medicine, Prague, Czech Republic, ²Brigham and Women's Hospital and Harvard Medical School, Boston, MA

Available now on https://www.ahajournals.org/journal/circ

Conventional implantation technique: Full sternotomy

Dimensional evolution of the technology

HeartMate XVE

HeartMate 3

Mechanical	Circulatory	Support
------------	-------------	---------

Ventricular assist device using a thoracotomy-based implant technique: Multi-Center Implantation of the HeartMate 3 in Subjects With Heart Failure Using Surgical Techniques Other Than Full Median Sternotomy (HM3 SWIFT)

Gosev et al

Mechanical	Circulatory	Support
------------	-------------	---------

Ventricular assist device using a thoracotomy-based implant technique: Multi-Center Implantation of the HeartMate 3 in Subjects With Heart Failure Using Surgical Techniques Other Than Full Median Sternotomy (HM3 SWIFT)

Standardized Difference

0.4

Gosev et al

Mechanical Circulatory Support

Ventricular assist device using a thoracotomy-based implant technique: Multi-Center Implantation of the HeartMate 3 in Subjects With Heart Failure Using Surgical Techniques Other Than Full Median Sternotomy (HM3 SWIFT)

Gosev et al

Gosev et al

Mechanical Circulatory Support

Ventricular assist device using a thoracotomy-based implant technique: Multi-Center Implantation of the HeartMate 3 in Subjects With Heart Failure Using Surgical Techniques Other Than Full Median Sternotomy (HM3 SWIFT)

TABLE 4. Implant procedure details

Characteristic	Thoracotomy (n = 102	-based		Sternotom (n = 2	y-based 204)		P value
Total implant time (min)	395.8 ± 129.5 (n =	$395.8 \pm 129.5 \ (n = 102/102)$			$284.3 \pm 110.9 \ (n = 204/204)$		
Total time on CPB (min)	122.6 ± 64.8 (n =	= 100/102)		$83.5 \pm 39.8 \ (n = 203/204)$			<.0001
Received blood products	82.4 (n =	= 84/102)		79.9 (n = 163/204)	.61
Whole blood	1.0 (n =	= 1/102)		2.0 (n = 4/204)		.67*
Packed red blood cells	44.1 (n =	44.1 (n = 45/102)			34.8 (n = 71/204)		
Fresh frozen plasma	32.4 (n = 33/102)			37.3 (n = 76/204)			.40
Platelets	43.1 (n =	43.1 (n = 44/102)			40.2 (n = 82/204)		
Cryoprecipitate	25.5 (n =	25.5 (n = 26/102)			27.0 (n = 55/204)		
Cell saver	56.9 (n =	56.9 (n = 58/102)			54.4 (n = 111/204)		
Concurrent procedures	12.7 (n =	= 13/102)		12.7 (n = 26/204)		.27
CABG/valve	4.9 (n = 5/102)		8.3 (n = 17/204)			.22	
Right heart failure	22 (21.6)	22	0.52	58 (28.4)	61	0.68	.26
RVAD	14 (13.7)	14	0.33	11 (5.4)	11	0.12	.02
>14 consecutive days on inotropes	10 (9.8)	10	0.23	22 (10.8)	22	0.25	.90

Alternative implant strategy: Via left hemithorax

Challenges in small LV and restrictive physiologies

Role of ventricular assist therapy for patients with () crossMark heart failure and restrictive physiology: Improving outcomes for a lethal disease

Avishay Grupper, MD,^a Soon J. Park, MD,^b Naveen L. Pereira, MD,^a Sarah D. Schettle, RN,^b Yariv Gerber, PhD,^c Yan Topilsky, MD,^a Brooks S. Edwards, MD,^a Richard C. Daly, MD,^b John M. Stulak, MD,^b Lyle D. Joyce, MD, PhD,^b and Sudhir S. Kushwaha, MD^a J Heart Lung Transplant 2015;34:1042–1049

Challenges in small LV and restrictive physiologies

Prediction of Survival After Implantation of a Fully Magnetically Levitated Left Ventricular Assist Device

Mandeep R. Mehra, MD, MSc,^{a,*} Aditi Nayak, MD,^{b,*} Alanna A. Morris, MD, MSc,^b David E. Lanfear, MD, MS,^c Hassan Nemeh, MD,^c Sapna Desai, MD,^d Aditya Bansal, MD,^d Cesar Guerrero-Miranda, MD,^e Shelley Hall, MD,^e Joseph C. Cleveland, J_R, MD,^f Daniel J. Goldstein, MD,^g Nir Uriel, MD, MSc,^h Leway Chen, MD,ⁱ Stephen Bailey, MD,^j Anelechi Anyanwu, MD,^k Gerald Heatley, MS,¹ Joyce Chuang, PHD,¹ Jerry D. Estep, MD^m

CENTRA Ventricula	ENTRAL ILLUSTRATION Prediction of Survival After Implantation of a Fully Magnetically Levitated Le entricular Assist Device: the HeartMate 3 Survival Risk Score						
	The HM3RS provides individual survival prediction at 1 and 2 years post-implant						
	The HM3RS contains 6 predictors 2 demographic variables 2 chemistry labs 1 echocardiogram parameter 1 invasive hemodynamic parameter 						
	Baseline Characteristic	Parameter Estimate	Hazard Ratio (95% CI)	<i>P</i> -Value			
	Age in years Prior valve procedure or CABG Na in mmol/L BUN in mg/dL LVEDD <5.5 cm RAP/PCWP >0.6	0.03496 0.53029 -0.04112 - 0.01093 0.62149 0.44785	•	<0.001 <0.001 0.005 0.003 			
		0.5 Lower Risk	1.5 2 2.5 Higher Risk	3			

Intra-atrial conduit LVAD implant considerations

- Small LV dimension
- Technical concerns of the cannula insertion (LV aneurysm, calcified or friable apex)
- Other anatomic considerations

Consequences of suboptimal inflow cannula positioning

- Cannula encroachment to the septum or free-wall
- Risk of intraventricular/pump thrombosis
- Ventricular arrhythmias
- Insufficient LV unloading with residual HF
- Impaired RV function

LA appendage closure mandatory in de novo cases!

BIVAD and TAH Considerations

Patients with end-stage heart failure, OMM refractory, requiring mechanical circulatory support in whom LVAD is considered inefficient or contraindicated:

In patients with severe chronic biventricular failure, a BiVAD or a TAH should be considered.	lla	B	[81, 147, 162–178, 187–191, 200, 203–208, 212]
---	-----	---	---

- **RVEF** ≤ 30%
- **TAPSE** ≤ **14mm**
- RV-to-LV end-diastolic diameter ratio > 0.72
- CVP > 15 mmHg
- CVP-to-PCWP ratio > 0.63
- $PAPi \leq 2.0$ (PAs PAd/CVP)
- Tricuspid insufficiency grade 4

Alternative implant considerations

The results of a single-center experience with HeartMate 3 in a biventricular configuration

David McGiffin, MD,^a Christina Kure, PhD,^a Janelle McLean, RN,^b Silvana Marasco, MD, PhD,^a Peter Bergin, MD,^b James L. Hare, MD, PhD,^b Angeline Leet, MD,^b Hitesh Patel, MD, PhD,^b Adam Zimmet, MD,^a Julia Rix, RN,^b Andrew Taylor, MD, PhD,^b and David Kaye, MD, PhD^b

HeartMate 3 biventricular support exceeding 4.5 years

Hrvoje Gasparovic^{1*}, Davor Milicic², Kristina Krželj¹, Maja Hrabak Paar³, Tomislav Kopjar¹, Nina Jakus², Ivo Planinc² and Maja Cikes²

BIVAD and TAH Considerations

Patients with end-stage heart failure, OMM refractory, requiring mechanical circulatory support in whom LVAD is considered inefficient or contraindicated:

- Ventricular thrombosis
- Ventricular septal defect
- Restrictive/constrictive etiologies
- Cardiac tumors
- Refractory arrythmias
- Fulminant rejection after HTx

A TAH may be indicated in patients with biventricular failure, restrictive cardiomyopathy, car- diac tumours or large ventricular septal defects.	ШЬ	c	[187, 193, 197–201]
In patients with anatomical or other clinical conditions that are not well served with an LVAD or BiVAD, implantation of a TAH may be considered.	ШЬ	c	[203-208]

Adult Adult Deperative Techniques in Thoracic and Cardiovascular Surgery Implantation of two HeartMate 3s in the setting of a Total Artificial Heart Jasmin S. Hanke, MD, Günes Dogan, MD, Axel Haverich, MD, PhD and Jan D. Schmitto, MD, PhD

Modified TAH Implant (S/P Mustard operation) - IKEM

Conclusions

- LVADs game-changer in HF patients prognosis with significant survival benefit
- 5-years survival above 60% with improved functional capacity QoL
- Accomplishments in addressing residual risks (bleeding AEs)
- Signal of DOACs (Apixaban) safety use
- Clinical feasibility in challenging anatomies with alternative surgical strategies
- Versatility in biventricular heart failure and TAH mandated scenarios