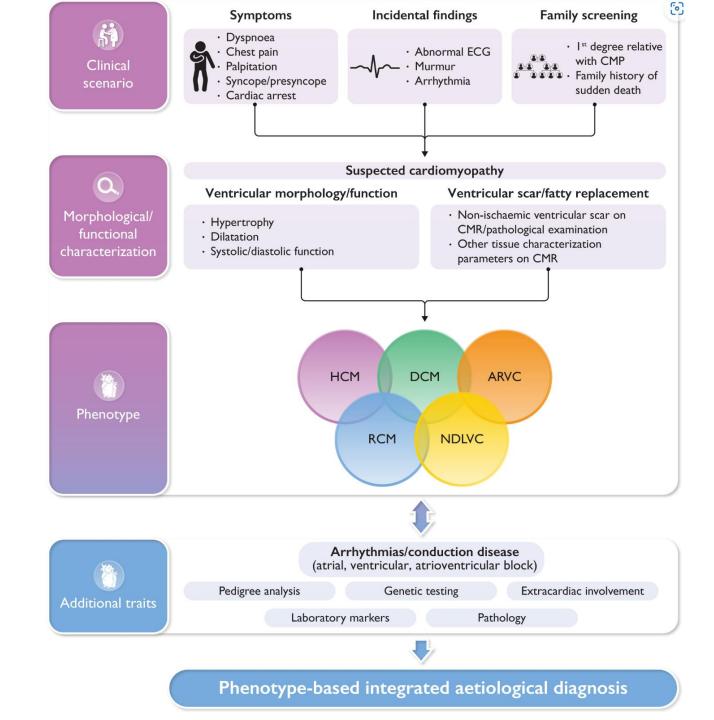
KLASIFIKACE A PATOFYZIOLOGIE KARDIOMYOPATIÍ

Aleš Linhart

General University Hospital, Prague
Charles University in Prague
First Faculty of Medicine
Charles University
Prague


2023 ESC Guidelines for the management of cardiomyopathies

Developed by the task force on the management of cardiomyopathies of the European Society of Cardiology (ESC)

Authors/Task Force Members: Elena Arbelo (1) *†, (Chairperson) (Spain), Alexandros Protonotarios (5) †, (Task Force Co-ordinator) (United Kingdom), Juan R. Gimeno (1) [‡], (Task Force Co-ordinator) (Spain), Eloisa Arbustini (1) (Italy), Roberto Barriales-Villa (Spain), Cristina Basso (Italy), Connie R. Bezzina (Italy) (Netherlands), Elena Biagini (Italy), Nico A. Blom (Netherlands), Rudolf A. de Boer (Netherlands), Tim De Winter (Belgium), Perry M. Elliott (1) (United Kingdom), Marcus Flather (1) (United Kingdom), Pablo Garcia-Pavia (1) (Spain), Kristina H. Haugaa ((Sweden), Jodie Ingles ((Australia), Ruxandra Oana Jurcut (1) (Romania), Sabine Klaassen (1) (Germany), Giuseppe Limongelli (Italy), Bart Loeys (1) (Belgium), Jens Mogensen (1) (Denmark), Iacopo Olivotto (1) (Italy), Antonis Pantazis (1) (United Kingdom), Sanjay Sharma ((United Kingdom), J. Peter Van Tintelen ((Netherlands), James S. Ware (United Kingdom), Juan Pablo Kaski (*†, (Chairperson) (United Kingdom), and ESC Scientific Document Group

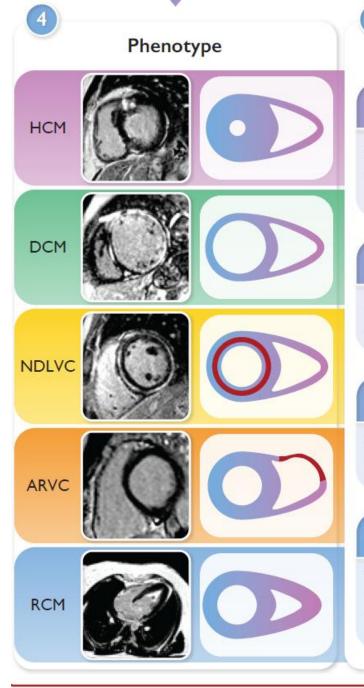
Clinical diagnostic workflow of cardiomyopathy

Arbelo et al. Eur Heart J. 2023 Aug 25; ehad 194. doi:10.1093/eurhearti/ehad 194.

Morphological and functional traits used to describe cardiomyopathy phenotypes

Morphological traits

Ventricular **hypertrophy**: left and/or right


Ventricular dilatation: left and/or right

Non-ischaemic ventricular scar and other myocardial tissue characterization features on cardiac magnetic resonance

Functional traits

Ventricular **systolic dysfunction** (global, regional)

Ventricular diastolic dysfunction (restrictive physiology)

- General management principles
 - Symptom management
- · Drug therapy
- Mechanical circulatory support/transplantation
 - Family screening and genetic risk to relatives
- · Genetic testing and counselling
- · Family screening and monitoring
 - Prevention of diseaserelated complications
- · SCD → ICD
- Stroke → thromboembolic prophylaxis

Lifestyle

- · Exercise recommendations
- · Pregnancy
- School, employment, psychological support

- Phenotypespecific management
 - · LVOTO management
 - · SCD risk prediction
 - · GDMT for HF symptoms
 - Aetiology-specific SCD risk prediction
 - · GDMT for HF symptoms
 - Aetiology-specific SCD risk prediction

- · Antiarrhythmic therapy
- · SCD risk prediction

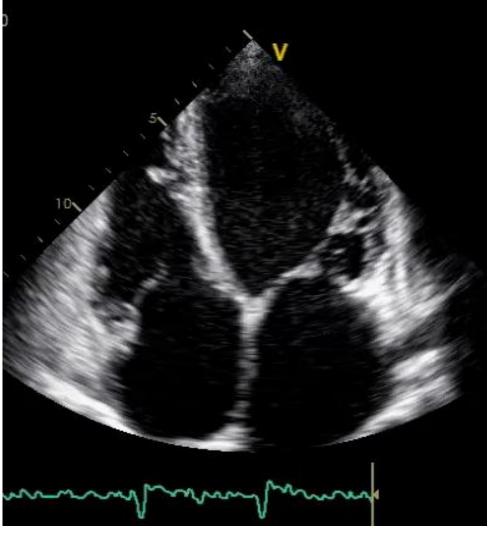
- · GDMT for HF symptoms
- PVR study to guide timing of transplantation

DILATED CARDIOMYOPATHY

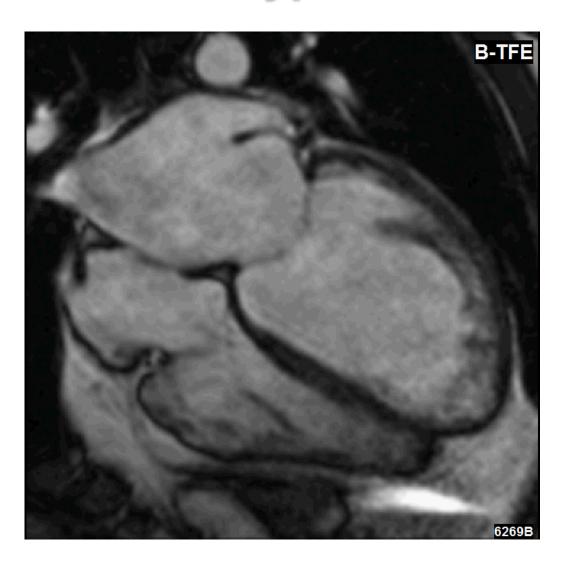
Definitions – dilated cardiomyopathy

- Dilated cardiomyopathy (DCM) is defined as the presence of LV dilatation and global or regional systolic dysfunction unexplained solely by abnormal loading conditions (e.g. hypertension, valve disease, CHD) or CAD.
- Very rarely, LV dilatation can occur with normal ejection fraction (EF) in the absence of athletic remodelling or other environmental factors; this is not in itself a cardiomyopathy, but may represent an early manifestation of DCM.

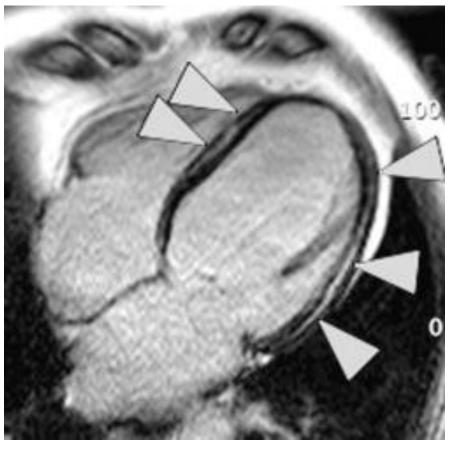
DCM definitions


 Left ventricular dilatation is defined by LV end-diastolic dimensions or volumes >2 z-scores above population mean values corrected for body size, sex, and/or age.

- For adults (ECHO)
 - LV enddiastolic diameter >58 mm in males and >52 in females
 - LVEDV index of ≥75 mL/m² in males and ≥62 mL/m² in females


LV global systolic dysfunction is defined by LVEF <50%

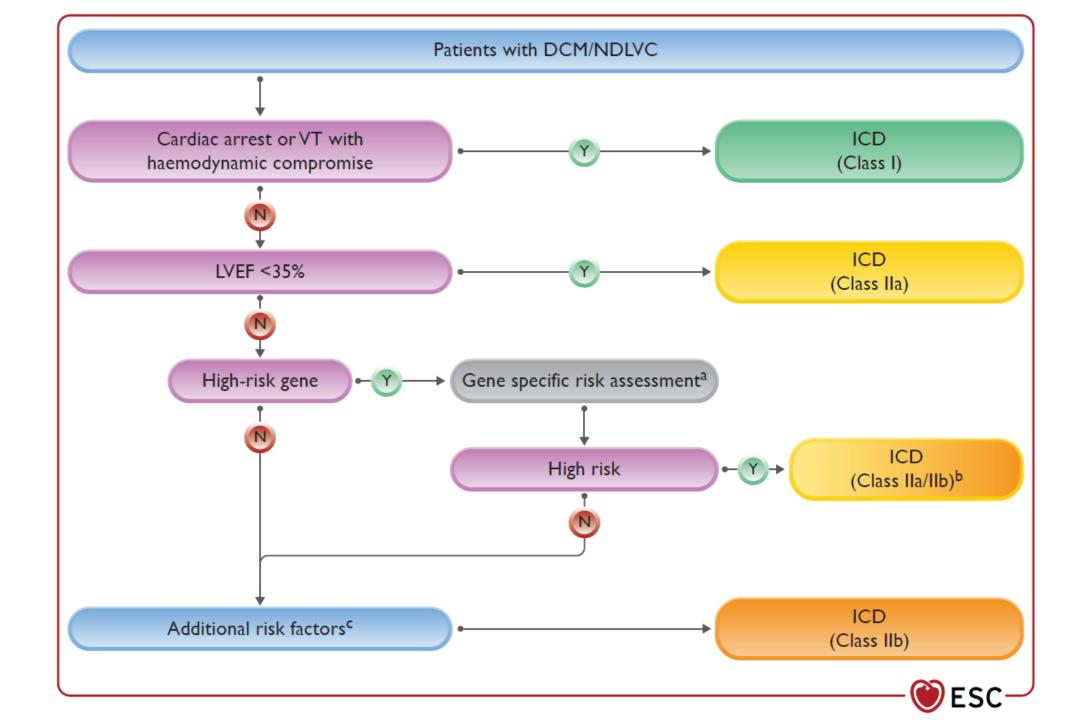
Echocardiography



Typical DCM CMRI appearance

Midwall LGE (present in 30% patients)

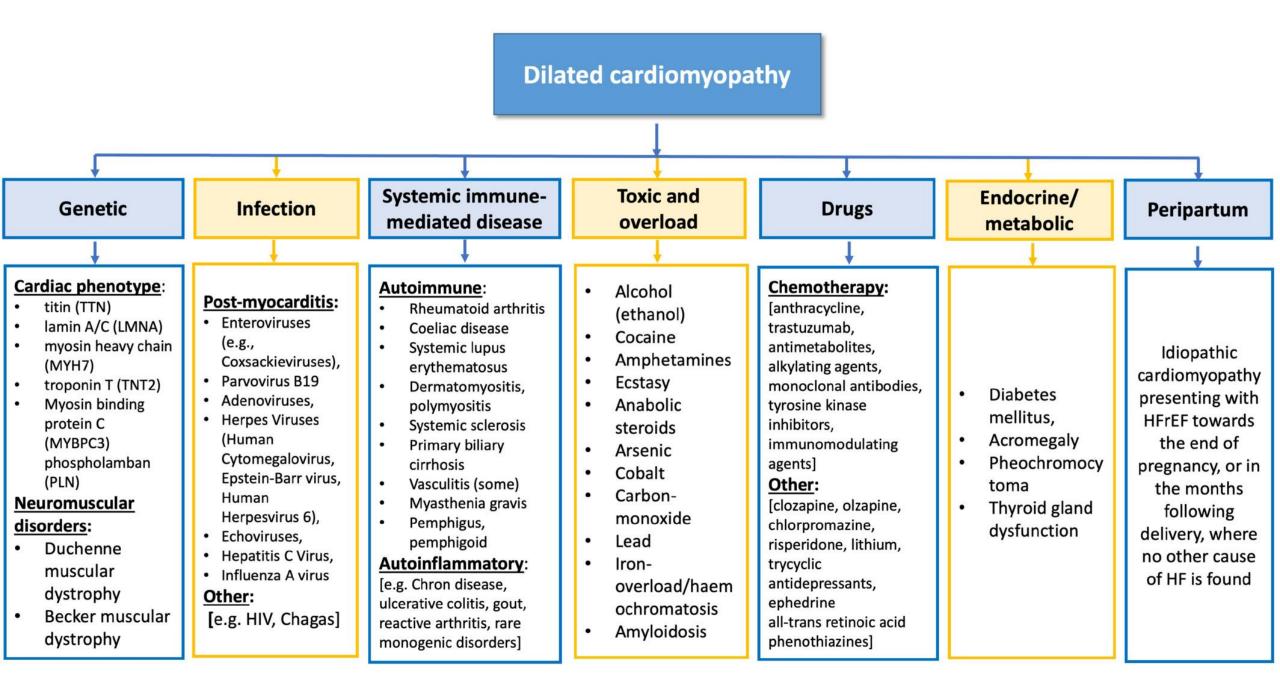
White JA, Patel MR. Cardiol Clin. (2007)


Imaging source: General University Hospital, Prague, CZ

Genes associated with isolated cardiac involvement and DCM

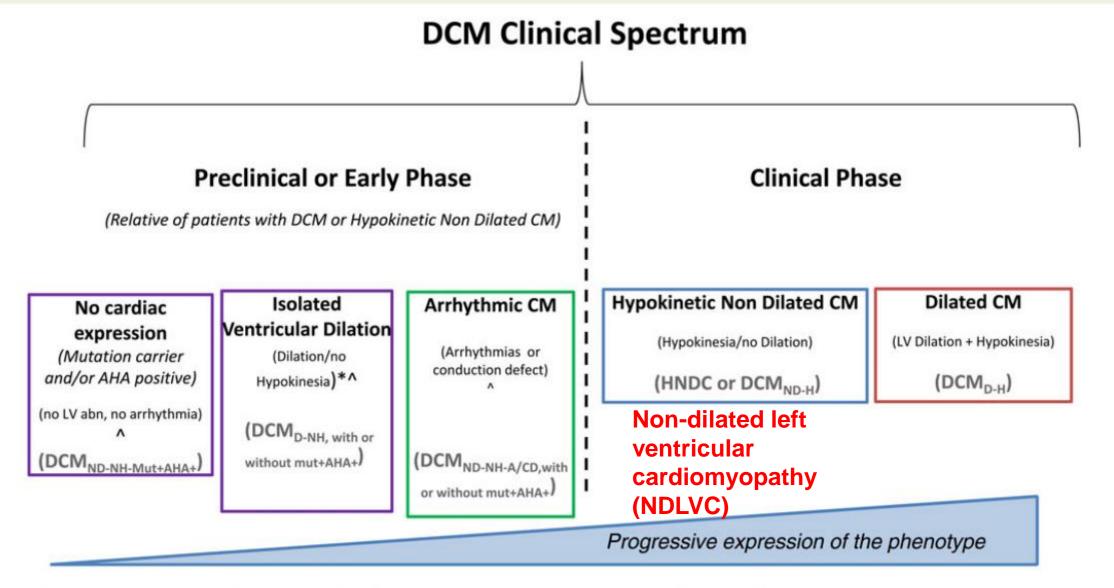
Titin (TTN)	~20-25% of familial DCM - AD mode
Lamin A/C (LMNA)	~6%; AD mode; associated with AVB and VA; can also cause Limb-Girdle myopathy
Myosin heavy chain (MYH7)	~4% ; AD mode
Troponin T (TNNT2)	~2% ; AD mode
Myosin binding protein C (MYBPC3)	~2% ; AD mode
RNA Binding Motif-20 (RBM20)	~2% ; AD mode
Myopalladin (MYPN)	~2% ; AD mode
Sodium channel alpha unit (SCN5A)	~2% ; AD mode
BaCl2 associated athanogene 3 (BAG3)	~2%; AD mode
Phospholamban (PLN)	~1%; AD mode; low QRS voltage on ECG

High-risk genotypes and associated predictors of sudden cardiac death


Gene	Annual SCD rate	Predictors of SCD
LMNA (Lamin A/C)	5-10%	Estimated 5-year risk of life-threatening arrhythmia using LMNA risk score (https://lmna-risk-vta.fr)
FLNC (filamin C) – truncating variants	5-10%	LGE on CMR; LVEF < 45%
TMEM43 (Transmembrane protein 43)	5-10%	Male Female and any of the following: LVEF <45%; NSVT; LGE on CMR; >200 VE on 24h Holter ECG
PLN (phospholamban)	3-5%	Estimated 5-year risk of life-threatening arrhythmia using <i>PLN</i> risk score (https://plnriskcalculator.shinyapps.io/final_shiny) LVEF < 45%; LGE on CMR; NSVT
DSP (desmoplakin)	3-5%	LGE on CMR; LVEF < 45%
RBM (RNA binding motif protein)	3-5%	LGE on CMR; LVEF < 45%

Heart failure in cardiomyopathies: a position paper from the Heart Failure Association of the European Society of Cardiology

Petar M. Seferović^{1,2*}, Marija Polovina^{1,3}, Johann Bauersachs⁴, Michael Arad⁵, Tuvia Ben Gal⁶, Lars H. Lund⁷, Stephan B. Felix⁸, Eloisa Arbustini⁹, Alida L.P. Caforio¹⁰, Dimitrios Farmakis¹¹, Gerasimos S. Filippatos¹¹, Elias Gialafos¹², Vladimir Kanjuh², Gordana Krljanac^{1,3}, Giuseppe Limongelli¹³, Aleš Linhart¹⁴, Alexander R. Lyon¹⁵, Ružica Maksimović^{1,16}, Davor Miličić¹⁷, Ivan Milinković³, Michel Noutsias¹⁸, Ali Oto¹⁹, Öztekin Oto²⁰, Siniša U. Pavlović^{1,21}, Massimo F. Piepoli²², Arsen D. Ristić^{1,3}, Giuseppe M.C. Rosano²³, Hubert Seggewiss²⁴, Milika Ašanin^{1,3}, Jelena P. Seferović^{25,26}, Frank Ruschitzka²⁷, Jelena Čelutkiene^{28,29}, Tiny Jaarsma³⁰, Christian Mueller³¹, Brenda Moura³², Loreena Hill³³, Maurizio Volterrani³⁴, Yuri Lopatin³⁵, Marco Metra³⁶, Johannes Backs^{37,38}, Wilfried Mullens^{39,40}, Ovidiu Chioncel^{41,42}, Rudolf A. de Boer⁴³, Stefan Anker^{44,45,46}, Claudio Rapezzi⁴⁷, Andrew J.S. Coats^{48,49}, and Carsten Tschöpe⁵⁰



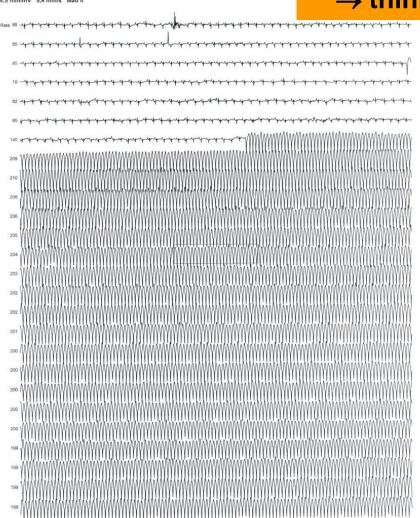
NON-DILATED LEFT VENTRICULAR CARDIOMYOPATHY (NDLVC)

Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases

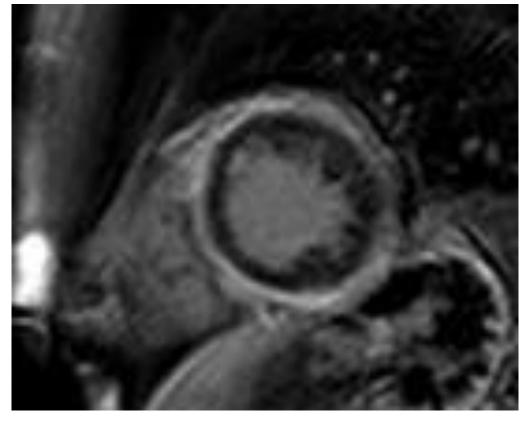
Yigal M. Pinto^{1*}, Perry M. Elliott², Eloisa Arbustini³, Yehuda Adler⁴, Aris Anastasakis⁵, Michael Böhm⁶, Denis Duboc⁷, Juan Gimeno⁸, Pascal de Groote^{9,10}, Massimo Imazio¹¹, Stephane Heymans^{12,13}, Karin Klingel¹⁴, Michel Komajda¹⁵, Giuseppe Limongelli¹⁶, Ales Linhart¹⁷, Jens Mogensen¹⁸, James Moon¹⁹, Petronella G. Pieper²⁰, Petar M. Seferovic²¹, Stephan Schueler²², Jose L. Zamorano²³, Alida L.P. Caforio²⁴, and Philippe Charron^{25,26}

^{*}Shown by two independent imaging modalities, ^mutation carrier or not; anti-heart autoantibody (AHA) positive or negative

Definitions - Non-dilated left ventricular cardiomyopathy (NDLVC)

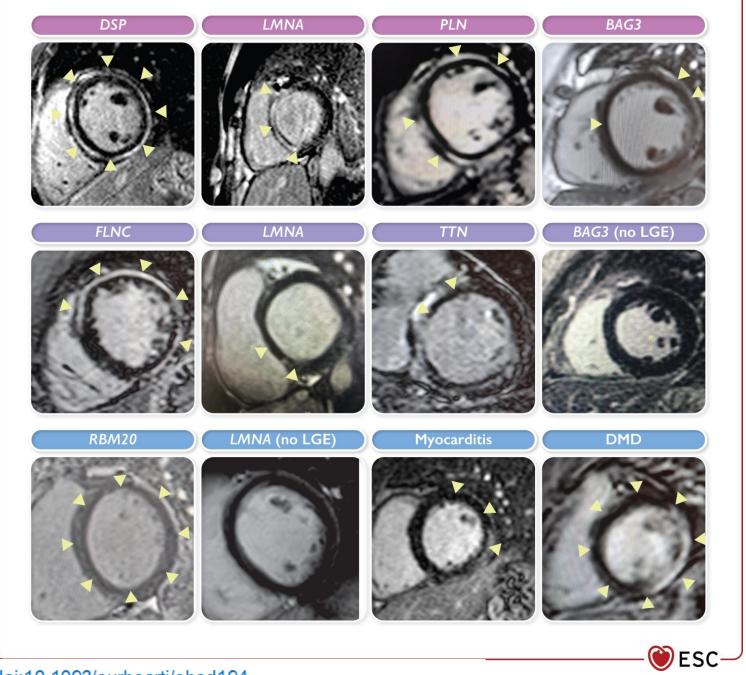

- NDLVC phenotype is defined by the presence of non-ischaemic LV scarring or fatty replacement in the absence of LV dilatation, with or without global or regional wall motion abnormalities, or isolated global LV hypokinesia without scarring (as assessed by the presence of LGE on CMR) that is unexplained solely by abnormal loading conditions (hypertension, valve disease) or CAD.
- Global LV systolic dysfunction is defined by abnormal LVEF (i.e. <50%).
- The NDLVC phenotype will include individuals that up until now may have variably been described as having DCM (but without LV dilatation), arrhythmogenic left ventricular cardiomyopathy (ALVC), left dominant ARVC, or arrhythmogenic DCM (but often without fulfilling diagnostic criteria for ARVC)

Arrhythmogenic LV cardiomyopathy


38-year old man with symptoms of palpitations, LVEF 40-45%; Myocarditis?

Mild LV systolic dysfuncion + VT

→ think about ALVC (and sarcoidosis)!



Circumferential subepicardial LGE

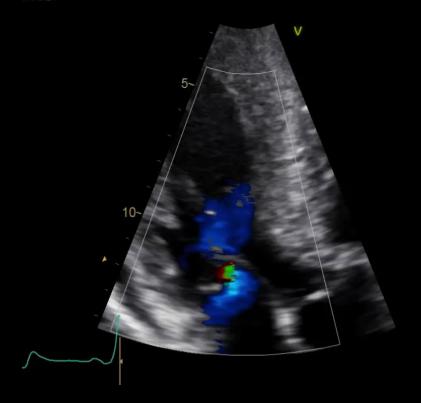
Imaging source: General University Hospital, Prague, CZ

Examples of non-dilated left ventricular cardiomyopathy phenotypes and their aetiological correlates.

HYPERTROPHIC CARDIOMYOPATHY

Hypertrophic cardiomyopathy?

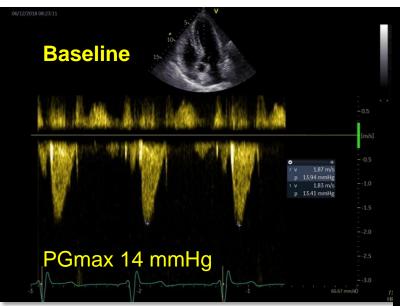
Presence of increased left ventricular (LV) wall thickness (with or without RV hypertrophy) or mass that is not solely explained by abnormal loading conditions.


In an adult ≥15 mm in one or more LV myocardial segments by any imaging technique

- ~ In relatives ≥13 mm
- Genetic & nongenetic disorders 13–14 mm

In children > 2 SD of the predicted mean (z-score >2)

Classical Cause of LVOTO

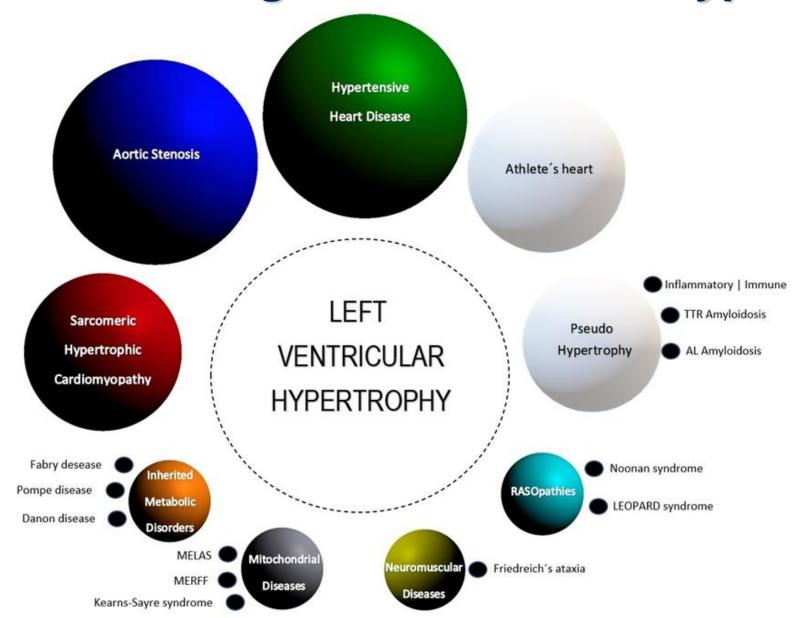

3:00:24

Exercise echocardiography

37% - obstruction at rest33% - provoked obstruction

PGmax 83 mmHg

^{3.} Rowin EJ, et al. *JACC Cardiovasc Imaging*. 2017;10:1374-1386. 4. Elliott PM, et al. *Eur Heart J*. 2006;27:1933-41.


Imaging: General University Hospital, Prague, Czech Republic

Genetic causes of cardiomyopathies

Panel A Panel B Panel C Autosomal dominant with Autosomal dominant with Sporadic presentation Low familial incomplete penetrance and (negative family history) complete penetrance aggregation variable severity/expressivity Severity Severity Severity Disease Disease Disease threshold threshold threshold Disease Disease Disease susceptibility susceptibility susceptibility Rare Mendelian variant Common variants (GWAS) Rare pathogenic variant Intermediate effect variant Population MAF < 0.01% Population MAF < 1-2% Population MAF > 1-5% Intermediate effect variant Small effect common variant Non-genetic factors

Arbelo et al. Eur Heart J. 2023 Aug 25;ehad194. doi:10.1093/eurheartj/ehad194

Differential diagnosis of cardiac hypertrophy

Aguiar Rosa....Olivotto, The International Journal of Cardiovascular Imaging (2023) 39:793–809

RESTRICTIVE CARDIOMYOPATHY

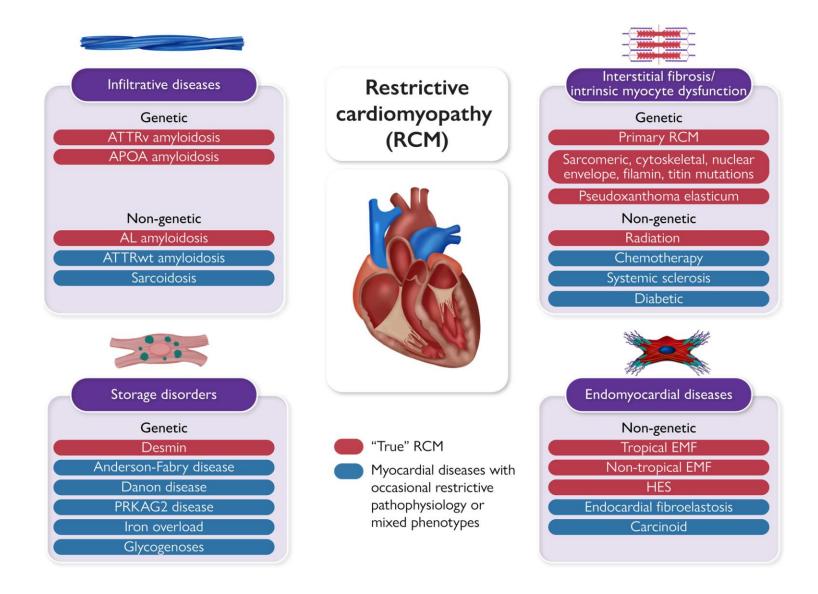
European Heart Journal (2022) 43, 4679–4693 https://doi.org/10.1093/eurhearti/ehac543

STATE OF THE ART REVIEW

Heart failure and cardiomyopathies

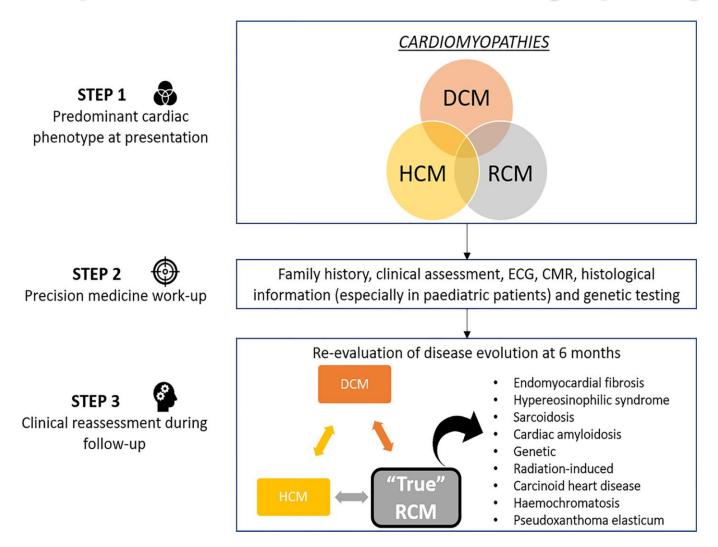
Restrictive cardiomyopathy: definition and diagnosis

Claudio Rapezzi^{1,2}*, Alberto Aimo (1) ^{3,4}, Andrea Barison (1) ^{3,4}, Michele Emdin^{3,4}, Aldostefano Porcari⁵, Ales Linhart (1) ⁶, Andre Keren (1) ^{7,8}, Marco Merlo (1) ⁵, and Gianfranco Sinagra⁵


¹Cardiologic Centre, University of Ferrara, Via Savonarola, 9, 44121 Ferrara, Italy; ²Maria Cecilia Hospital, GVM Care & Research, Via Corriera, 1, 48033 Cotignola, Ravenna, Italy; ³Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, piazza Martiri della Libertà 33, 56127 Pisa, Italy; ⁴Cardiology Division, Fondazione Toscana Gabriele Monasterio, via Moruzzi 1, 56124 Pisa, Italy; ⁵Center for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Via Giacomo Puccini, 50, 34148 Trieste, Italy; ⁶General University Hospital and Charles University, Opletalova 38, 110 00 Staré Město, Czech Republic; ⁷Cardiology Division, Hadassah Hebrew University Hospital, Sderot Churchill 8, Jerusalem, Israel; and ⁸Heart Failure Center, Clalit Health Services, Bnei Brit St 22, Jerusalem, Israel

Received 14 June 2022; revised 23 August 2022; accepted 16 September 2022; online publish-ahead-of-print 21 October 2022

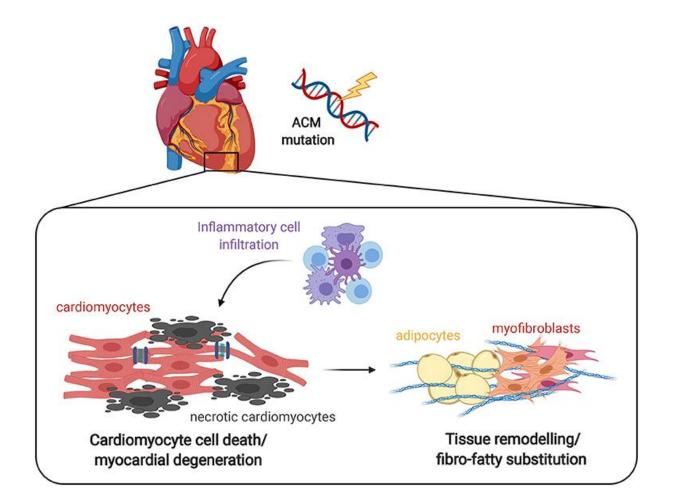
RCM definition


- Restrictive cardiomyopathy (RCM) is a heterogeneous group of diseases characterized by restrictive left ventricular pathophysiology, i.e. a rapid rise in ventricular pressure with only small increases in filling volume due to increased myocardial stiffness.
- More precisely, the defining feature of RCM is the coexistence of persistent restrictive pathophysiology, diastolic dysfunction, non-dilated ventricles, and atrial dilatation, regardless of ventricular wall thickness and systolic function.

Proposed classification of restrictive cardiomyopathy

Rapezzi et al. Eur Heart J, Volume 43, Issue 45, 1 December 2022, Pages 4679–4693,

Proposed flowchart for contemporary diagnostic work-up of restrictive cardiomyopathy.


ARRHYTHMOGENIC RIGHT VENTRICULAR CARDIOMYOPATHY

Arrhythmogenic right ventricular cardiomyopathy

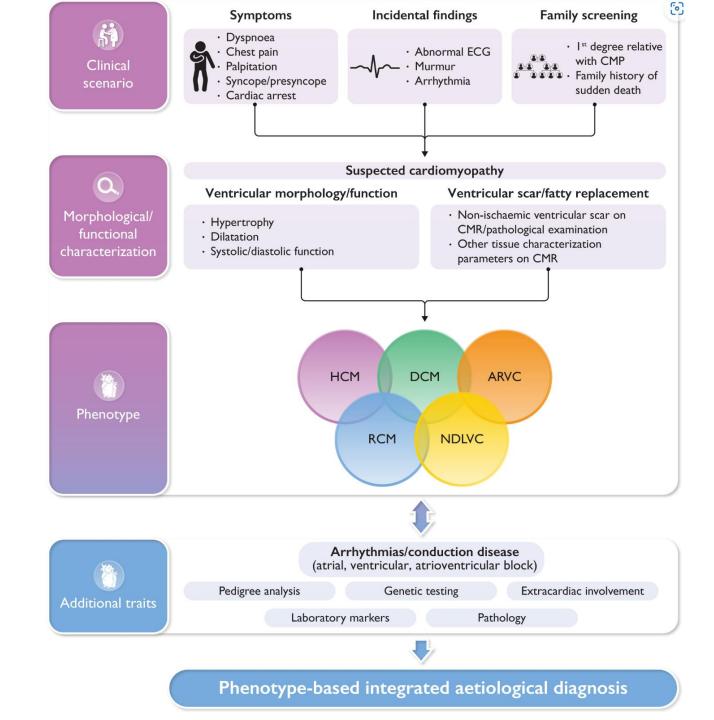
 Presence of predominantly RV dilatation and/or dysfunction in the presence of histological involvement and/or electrocardiographic abnormalities

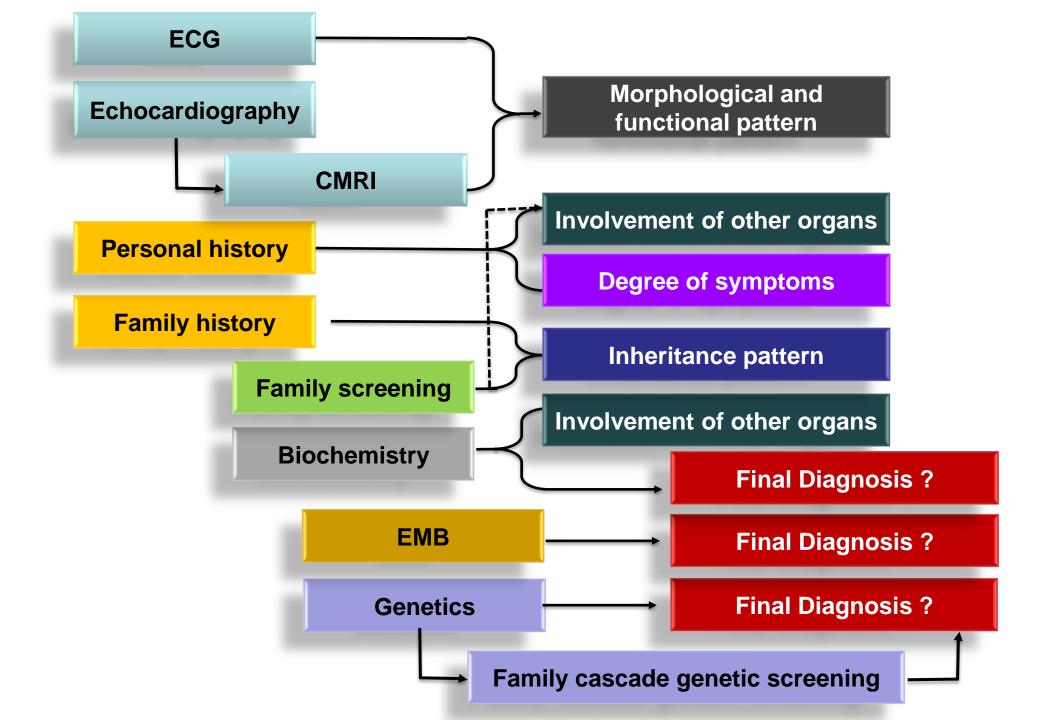
 The term ARVC can be used to describe the original variant in which ventricular dilatation or wall motion abnormalities are predominantly confined to the right ventricle, with or without LV involvement, and the 2010 modified Task Force criteria for the diagnosis of ARVC can be applied.

Classical concepts behind ARVC

Meraviglia et al. Front. Cardiovasc. Med., 20 December 2021 Sec. Cardiovascular Metabolism

Gene symbol	Protein name
Desmosomes JUP	Plakoglobin
PKP2	Plakophilin-2
DSP	Desmoplakin
DSG2	Desmoglein-2
DSC2	Desmocollin-2
Area Composita and connexome structure	
CTNNA3	αT-catenin
CDH2	Cadherin-2
SCN5A	Sodium Voltage-Gated Channel Alpha Subunit-5
ANK2	Ankyrin-B
TJP1	Tight junction protein 1
TMEM43	Transmembrane protein 43
Cytoskeleton	
DES	Desmin
LMNA	Lamin A/C
TTN	Titin
FLNC	Filamin C
ILK	Integrin-linked kinase
Calcium handling machinery	
RYR2	Ryanodine receptor 2
PLN	Phospholamban
Cell signaling pathways	
TGFB3	Transforming growth factor-β3
TP63	Tumor pro tein P63
PPP1R13L	Protein phosphatase 1 regulatory subunit 13
PNPLA2	Patatin-like phospholipase domair containing 2


LEFT VENTRICULAR HYPERTRABECULATION (LEFT VENTRICULAR NON-COMPACTION)


LVNC is no longer a cardiomyopathy per se

- The Task Force does not consider LVNC to be a cardiomyopathy in the general sense.
- Instead, it is seen as a phenotypic trait that can occur either in isolation or in association with other developmental abnormalities, ventricular hypertrophy, dilatation, and/or systolic dysfunction.
- Given the lack of morphometric evidence for ventricular compaction in humans the term 'hypertrabeculation', rather than LVNC, is recommended, particularly when the phenomenon is transient or clearly of adult onset.

Clinical diagnostic workflow of cardiomyopathy

Arbelo et al. Eur Heart J. 2023 Aug 25; ehad 194. doi:10.1093/eurhearti/ehad 194.

