New method of compression after coronary angiography and intervention from proximal

and distal radial approaches in randomized comparison with standard compression

- analysis of 500 patients

Ivo Bernat, David Horák, Jirouš Štěpán, Buchnerová Alena, Lerchner Tobias, Rokytová Renata, Rokyta Richard

> Interventional Cardiology, Cardiology Department University Hospital and Faculty of Medicine in Pilsen, Charles University

Background:

Duration and intensity of the radial artery compression after interventional procedures affect the occurrence of postprocedural local complications including radial artery occlusion and hematoma.

We investigated the use of standard mechanical compression and its combination with kaolin-impragnated gauze patch as a new method of hemostasis.

Blood stasis: importance of compression time

JACC: CARDIOVASCULAR INTERVENTIONS © 2019 PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION

Best Practices for the Prevention of Radial Artery Occlusion After Transradial Diagnostic Angiography and Intervention

An International Consensus Paper

Ivo Bernat, MD, PHD,^{a,*} Adel Aminian, MD,^{b,*} Samir Pancholy, MD,^c Mamas Mamas, MD, PHD,^d Mario Gaudino, MD,^e James Nolan, MD,^d Ian C. Gilchrist, MD,^f Shigeru Saito, MD, PHD,^g George N. Hahalis, MD, PHD,^h Antonio Ziakas, MD, PHD,ⁱ Yves Louvard, MD,^j Gilles Montalescot, MD, PHD,^k Gregory A. Sgueglia, MD, PHD,¹ Maarten A.H. van Leeuwen, MD, PHD,^m Avtandil M. Babunashvili, MD,ⁿ Marco Valgimigli, MD, PHD,^o Sunil V. Rao, MD,^p Olivier F. Bertrand, MD, PHD,^q for the RAO International Group

% 100 90 80 male 70 60 female 50 40 30 20 10 2nd 1st 3rd 4th 5th 6th 7th Procedure

Recommended protocol of RA hemostasis on the wrist

= not necessary in case of the distal radial approach

JACC Cardiovasc Interv 2019

proximal

Distal has benefits for our patients:

- Lower risk of hematomas

- Shorter compression time
- Easier postprocedural care
- More approaches from one hand
- Easier left radial aproach

We investigated the use of standard mechanical compression and its combination with kaolin-impragnated gauze patch as a new method of hemostasis in patients from our same day discharge program between January and July 2023.

Methods :

Five hundred consecutive patients (66±8 years, 75% males) after coronary angiography (70%) and intervention (30%) from the proximal (PRA) and distal radial (DRA) approaches were analyzed.

Compression was performed by mechanical inflatable device (TR Band) with or without kaolin gauze - 170 versus (vs.) 170 patients in proximal groups and 80 vs. 80 patients in distal groups. Time to hemostasis and access site complications were analyzed.

Standard mechanical compression by TR Band

Proximal approach

Distal approach

New method of compression

- standard compression facilitated with kaolin patch

Proximal radial

Distal radial

	Proximal + kaolin	Ρ-	Distal + kaolin	D-	Total	%
Number of patients	170	170	80	80	500	
male	116	125	72	61	374	75%
female	54	45	8	19	126	25%
age	65,8	65,9	65,2	65,3	65,6 +- 8,2	
BMI	29,5	30,0	29,8	30,1	29,8 +- 4,0	
hypertension	133	125	67	60	385	77%
dyslipidemia	116	135	62	62	375	75%
diabetes	54	52	26	18	150	30%
Smoking :						
currently	51	59	27	20	157	31%
exsmoker	31	23	8	7	69	14%
nonsmoker	88	88	45	53	274	55%

	P + kaolin (170)	P - (170)	D + kaolin (80)	D – (80)	Total (500)	
PAD	22	26	11	11	70	14,0%
COPD	12	14	3	5	34	7%
atrial fibrilation	33	27	16	13	89	18%
stroke/TIA	3	7	2	5	17	3%
CAD - family history	72	77	33	34	216	43%
CAD - patient's history :						39%
STEMI	20	23	9	9	61	12%
NSTEMI	19	20	9	7	55	11%
Stable angina	21	12	9	10	52	10%
Unstable angina	1	0	1	0	2	0,4%
Cardiogenic Shock	2	0	1	0	3	0,6%
Other	2	5	1	0	8	2%
None	105	95	50	54	304	61%

LV ejection fraction	P + kaolin (170)	P (170)	D + kaolin (80)	D (80)	Total (500)	%
≤ 40%	28	29	11	9	77	15%
41-50%	19	27	8	9	63	13%
> 50%	123	113	61	62	359	72%
Indication						
angina pectoris	57	65	30	32	184	37%
dyspnoe	33	28	9	11	81	16%
atypical chest pain	20	19	12	10	61	12%
elective PCI or re-CAG	18	21	5	9	53	11%
heart failure	19	13	8	8	48	10%
history of MI	7	4	4	1	16	3%
positive stress test	3	3	4	1	11	2%
ECG changes	3	6	1	1	11	2%
angioCT findings	4	4	0	3	11	2%
ECHO findings	1	1	2	0	4	1%
other	5	6	5	4	20	4%

Medication	P+ kaolin (170)	P- (170)	D+ kaolin (80)	D- (80)	Total (500)	%
AA monotherapy	62	68	39	26	195	39%
ASA	61	65	38	24	188	38%
clopidogrel	1	3	1	2	7	1,4%
DAPT	52	46	19	23	140	28%
ASA + clopidogrel	41	31	15	19	106	21%
ASA + other (mainly ticagrelor)	11	15	4	4	34	7%
OAC	17	23	12	11	63	13%
DOAC	17	18	10	9	54	11%
warfarin	0	4	2	2	8	1,6%
LMWH	0	1	0	0	1	
AA+OAC	4	5	1	2	12	2,4%
triple therapy	11	3	1	4	19	4%
without any AT therapy	24	25	8	14	71	14%

Results

Baseline characteristics were similar in all four groups - proximal with kaolin (PK+) and without kaolin (PK-), distal with kaolin (DK+) and without kaolin (DK-).

Time to hemostasis was **57±20** min in PK+ vs **83±19** min in PK- group and **48±12** min in DK+ vs. **63±12** min in DK- group (both p<0,001).

Compression times in distal groups were significantly shorter in comparison with proximal groups (p<0,01).

Hematomas grade I (<5cm) were more often in proximal RA - 20% vs 6,9% in distal RA and similarly as grade II (<10cm) – in proximal RA 4,4% vs 0,6% in distal RA (both p<0,001). Only two patients with proximal RA had hematomas grade III (>10cm).

No patient had postprocedural radial artery occlusion.

Procedural characteristics and results

Type of procedure	P+ (170)	P- (170)	D+ (80)	D- (80)	Total (500)	%
CAG	110	124	58	57	349	70%
CAG + PCI	60	46	22	23	151	30%
Procedural time (min)	24,3	23,6	23,6	23,6	23,8+-12,1	
Fluoroscopy time (min)	6,1	5,5	4,7	4,8	5,3+-3,8	
Contrast consumption (ml)	114	105	112	106	109+-46,4	
Compression time (min)	56,8 v	vs 82,6	48,1 V	/s 62,7	62,5+-17,7	
						7,9%

No patient had postprocedural radial artery occlusion.

Complications

	P+ (170)	P- (170)	D+ (80)	D- (80)		Total (500)	%
Hematoma - Grade I	35	33	4	7	20% vs 6,9%	79	15,8%
CAG	23	22	3	4		52	10,4%
CAG + PCI	12	11	1	3		27	5,4%
age (years)	69,7	68,7	69,6	72,3		70,1	\frown
Hematoma - Grade II	10	5	1	0	4,4% vs 0,6%	16	3,2%
CAG	7	2	1	0		10	2,0%
CAG + PCI	3	3	0	0		6	1,2%
age	69,3	75,0	80,6			75,0	\frown
Hematoma - Grade III	1	1	0	0	0,6% vs 0,0%	2	0,4%
CAG	1	0	0	0		1	0,2%
CAG + PCI	0	1	0	0		1	0,2%
age	75,7	83,4				79,5	
Radial artery occlusion (RAO)	0	0	0	0		0	0,0%

Hematomas

Grade IV.

Grade V.

Subcutaneous hematoma grade II. (10cm)

In our study:

grade II. 4,4% proximal vs 0,6% distal

grade III. 0,6% proximal vs 0,0% distal

Conclusion

The use of the new combined method of radial artery hemostasis was associated with shorter compression time both in proximal RA and distal RA in comparison with standard only mechanical compression.

Distal RA was associated with shorter compression time in both groups compared to proximal RA and almost absence of any local complications.

Local hematomas were dominantly observed in patients with proximal RA.

There were no radial artery occlusion in this analysis.