Fallotova tetralogie Opravena ano, vyléčena ne

Petr Bukovský¹, Václav Chaloupecký¹, Bohumil Hučín¹, Tomáš Tláskal¹, Arnošt Komárek², Jan Janoušek¹, Roman Gebauer¹

1Children's Heart Centre, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic

2Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics Charles University, Prague,

Czech Republic

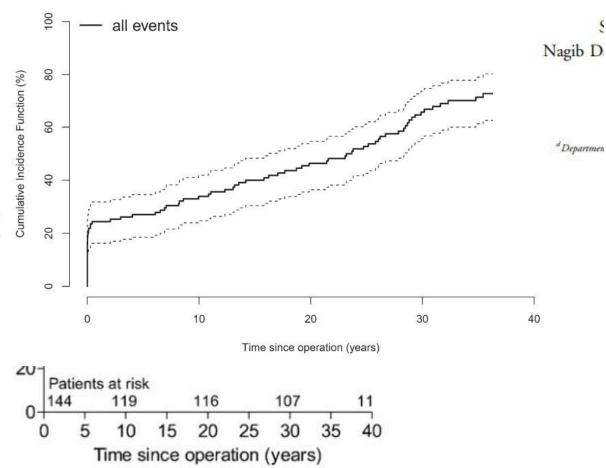
EDITORIAL

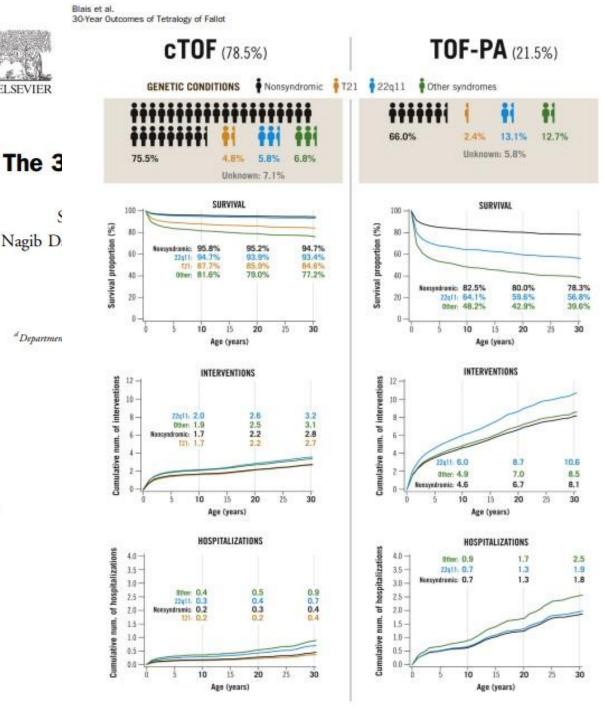
Adults with Tetralogy of Fallot -- Repaired, Yes; Cured, No

Amnon Rosenthal, M.D.

There are approximately 500,000 adults with congenital heart disease in the United States, and each year another 10,000 children who have undergone surgical repair reach adulthood¹. The largest diagnostic category among patients undergoing repair is isolated ventricular septal defect, followed by tetralogy of Fallot. In classic tetralogy of Fallot, an anterior displacement of the infundibular septum results in a large ventricular septal defect and the development of infundibular pulmonary stenosis. Right ventricular hypertrophy is caused by right ventricular hypertension associated with both the ventricular septal defect and the pulmonary stenosis. Aortic override onto the right ventricle is the fourth . . .

August 26, 1993 N Engl J Med 1993; 329:655-656 DOI: 10.1056/NEJM199308263290911




Congenital Heart Disease

Unnatural History of Tetralogy of Fallot Prospective Follow-Up of 40 Years After Surgical Correction

Judith A.A.E. Cuypers, MD; Myrthe E. Menting, MD; Elisabeth E.M. Konings, MSc; Petra Opić, MSc; Elisabeth M.W.J. Utens, PhD; Willem A. Helbing, MD, PhD; Maarten Witsenburg, MD, PhD; Annemien E. van den Bosch, MD, PhD; Mohamed Ouhlous, MD, PhD; Ron T. van Domburg, PhD; Dimitris Rizopoulos, PhD;

Cumulative survival (%)

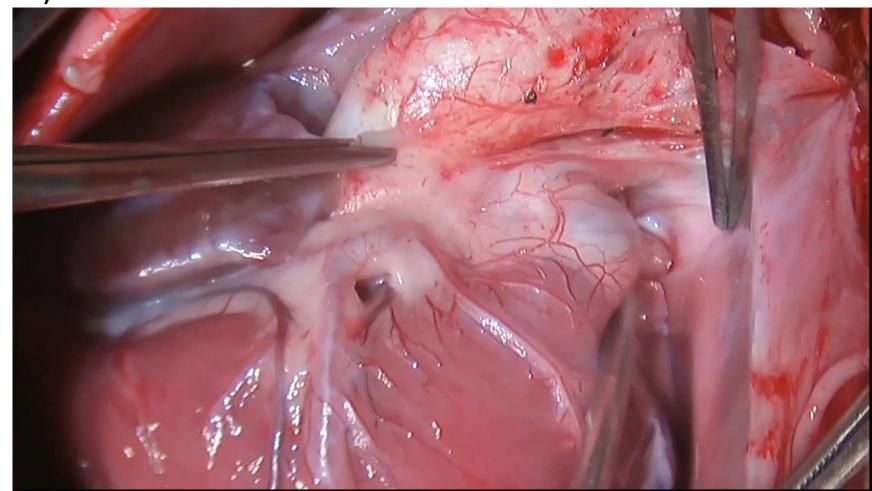
881

0

_ h

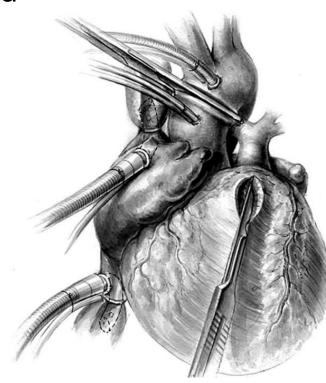
-3

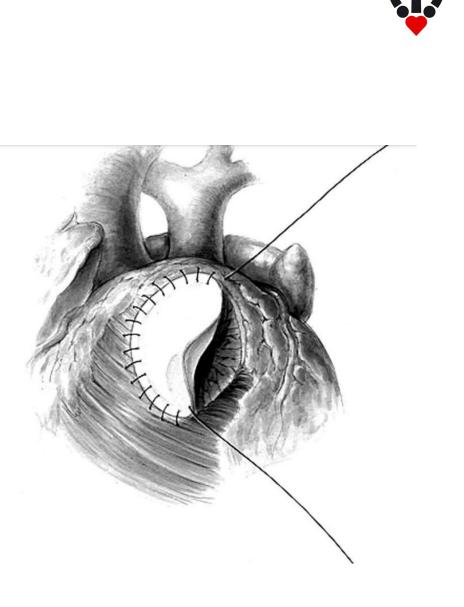
Methods



- A single nation-wide center retrospective cohort study
- 917 consecutive patients
- ToF repair: January 1979 December 2020
 - Transatrial (TAT), transventricular (TV), transannular (TAN), transannular with monocusp (MC)
- Data from the institutional clinical database
- Cross-mapping with
 - National Death Registry
 - National Registry of Cardiovascular Interventions in Adults
- End point
 - Death (any cause)
 - Surgical or catheter reintervention
- Statistics
 - Kaplan-Meier survival probability (log-rank statistics)
 - Cox regression (mutivariable)

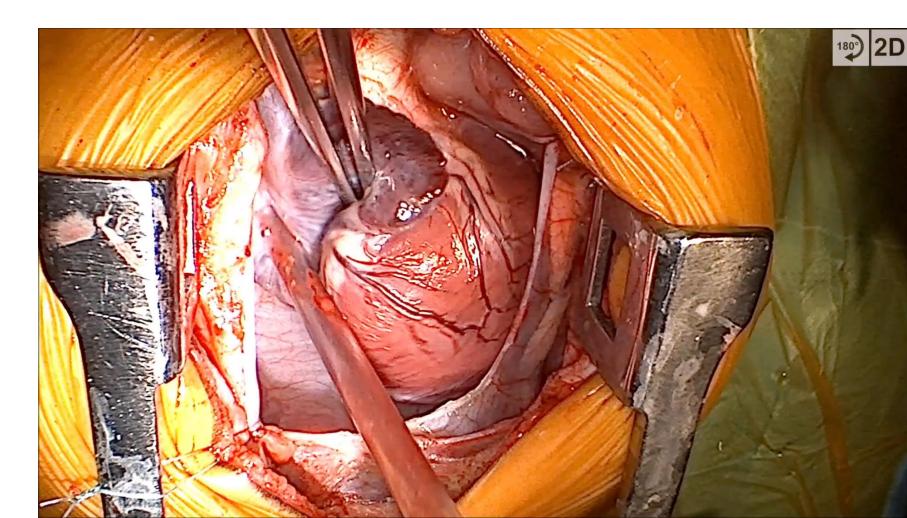
Surgical technique - video




• Transatrial repair (TAT)

Surgical technique

- Transventricular repair (TV)
- Schéma

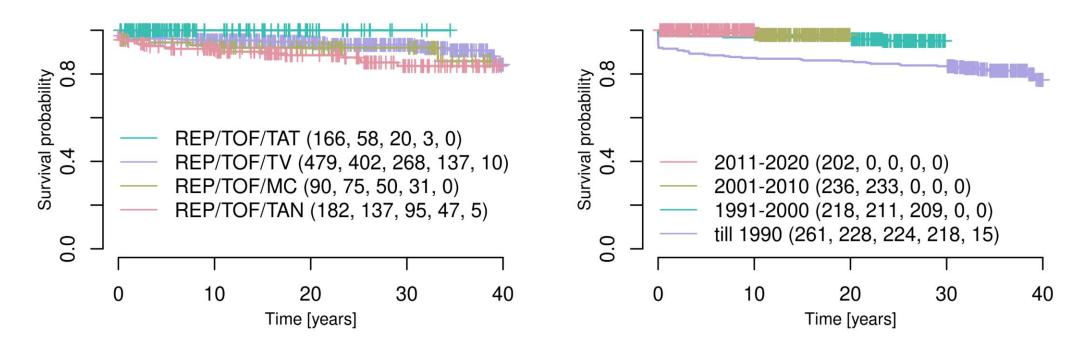


Surgical technique - video

• Transannular (TAN) +/- monocusp

Results – age and type of initial repair

• Age at initial repair


• Type of initial repair

Results: Survival

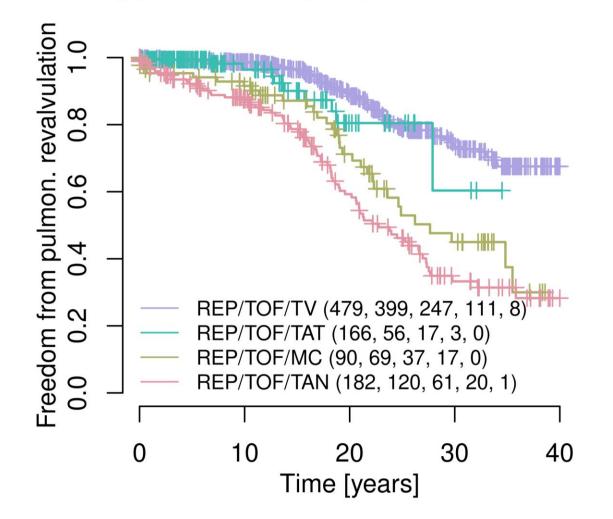
- Early mortality 2.62 % (24/917 of patients)
 - No early death was reported since 1993
- Late mortality 4.5 % (40/893 of patients)

A. Type of ToF repair, P-value: <0.001

Results: Survival

Factor	HR	95%Conf.Int.	Р
Surgical era			
1979 - 1990		Reference	
1991-2000	0.27	(0.12-0.59)	0.001
2001-2010	0.17	(0.06-0.48)	<0.001
2011-2020	NA		
Reinterventions			
Each additional	2,42	(1.78-3.28)	<0.001

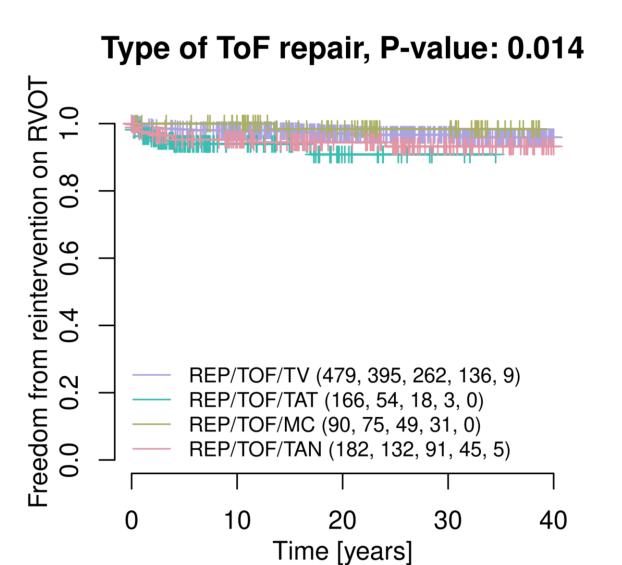
Results: Reoperations, reinterventions


• 487 surgical and transcatheter procedures in 253/917 patients (27.6%)

Туре	N	No of reinterventions per patient								
Pulmonary revalvulation	196	002	664	l						
Other pulmonary artery reinterventions	83	- 600								
Right ventricular outflow tract reinterventions	35	- 500								
Tricuspid valve revisions	43	400								
Aortic valve revisions	7	300								
Ascending aorta revisions	7	200								
Mitral valve revisions	4	- 10		123	73	33	13	6	1	4
Coronary artery revisions	3	-								
Residual VSD closure	10	C	0	1	2	3	4	5	6	7-9

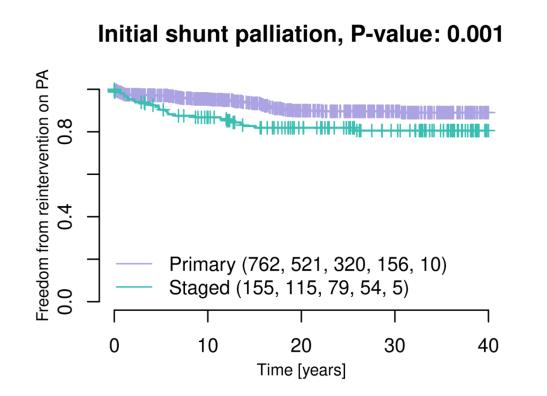
Results – Freedom from pulmonary revalvulation

Type of ToF repair, P-value: <0.001



Cox regression

Factor	HR	95%Conf.Int.	Р		
Age at initial repair					
Increase by 1 year	0.93	(0.88-0.99)	0.014		
Type of initial repair					
REP/TOF/TV	1.00	Reference			
REP/TOF/TAT	1.03	(0.52-2.04)	0.923		
REP/TOF/MC	2.87	(1.88-4.39)	<0.001		
REP/TOF/TAN	3.78	(2.73-5.22)	<0.001		


Results – Freedom RVOT reintervention

Cox regression •None significant

Cox regression

Factor	HR	95%Conf.Int.	Р	
Age at initial repair				
Increase by 1year	0.61	(0.48-0.76)	<0.001	
Type of initial repair				
REP/TOF/TV	1.00	Reference		
REP/TOF/TAT	1.63	(0.77-3.49)	0.205	
REP/TOF/MC	2.48	(1.28-4.79)	0.007	
REP/TOF/TAN	3.23	(1.91-5.44)	<0.001	
Initial shunt palliation			<0.001	
Primary	1.00	Reference		
Staged	4.55	(2.66-7.78)	<0.001	

Conclusions

- Most patients currently repaired in the first year of life
- Primary surgical repair is safe, approaching nowadays zero mortality
- 30-years survival >90 % in the modern era
- Burden of reinterventions, however, high
- Long-term results (specificaly pulmonary valve competence) dictated by surgical approach
- Shift to transatrial approach over time
- Specific RVOT anatomy main driving factor for surgical decision making