

Myocardial involvement in patients with systemic scleroderma (SSc) (prospective observational study)

Hromádka M, Baxa J*, Rajdl D**, Suchý D***, Rokyta R

Cardiology department, University Hospital Pilsen, Czech Republic * Clinic of Imaging Methods, University Hospital Pilsen ** Department of Clinical Biochemistry and Haematology, University Hospital Pilsen *** Department of Clinical Pharmacology, University Hospital Pilsen

Scleroderma

- chronic connective tissue disease
- extracellular matrix deposition
- fibrotic sclerosis of peripheral and visceral arteries
- Raynaud's phenomenon with trophic changes, stiffening of the skin and involvement of the GIT, lungs, heart and kidneys

Modified Rodnan skin score (mRSS)

- the gold standard for the clinical assessment of skin fibrosis in SSc patients
- based on a palpation method that assesses skin thickness in combination with skin tethering at 17 anatomical sites on the body

Uninvolved

Foot

Mild thickening

Face

Foot

- clasification from 0-3

		Severe thickening
mRSS		Upper upper am
0	uninvolved/normal skin	Anterior chest
1	skin is harder to grasp, when grasped, a skin fold is formed, mild thickening	Abdomen
2	skin forms the skin fold, when grasped, but is definitely thicker	Hand
3	severe thickening of the skin, skin does not form a skinfold	

Cardiac complications of SSc

- low prevalence, but negative prognostic impact
- mortality from cardiac causes approx. 26%
- PAH prevalence 12%
- pericarditis 7-20%
- conduction disorders
- myocardial fibrosis not corresponding to typical coronary artery localization
- recurrent ischemia with subsequent reperfusion abnormalities → cardiac insufficiency

Study 2015

International Journal of Cardiology 249 (2017) 448-453

Myocardial fibrosis detected by magnetic resonance in systemic sclerosis patients – Relationship with biochemical and echocardiography parameters

Milan Hromádka^{a,1}, Jitka Seidlerová^{b,c,*,1}, David Suchý^d, Daniel Rajdl^e, Jan Lhotský^a, Jaroslav Ludvík^f, Richard Rokyta^a, Jan Baxa^f

* Cardiology Department, University Hospital and Faculty of Medicine in Plisen and Faculty Haspital, Charles University, Czech Republic

^b Internal Department II, University Haspital and Faculty of Medicine in Pilsen, Charles University, Czech Republic

^c Biamedical Centre, Faculty of Medicine in Pilsen, Charles University, Czech Republic

^d Department of Clinical Pharmacology, Rheumatology, University Hospital and Faculty of Medicine in Hisen, Charles University, Czech Republic

* Department of Clinical Biochemistry and Hematology, University Hospital and Faculty of Medicine in Pilsen, Caech Republic

¹ Department of Imaging Methods, University Haspital and Faculty of Medicine in Pilaen, Charles University, Czech Republic

ARTICLE INFO

Keywards:

T1 mapping

Galectin-3

Systemic sclerosis

ABSTRACT

Article history: Received 30 April 2017 Received in revised form 13 July 2017 Accepted 29 August 2017 Avail able online 18 September 2017

Cardiovascular magnetic resonance

Extracellular volume estimation

Growth differentiation factor 15

Objectives: Systemic scleroderma (SSc) is a rare connective tissue disease presenting with fibrosis affecting skin and internal organs. Cardiovascular magnetic resonance (CMR) with quantification of extraellular volume (ECV) and T1 mapping mighthelp to detect heart involvement. We aimed to evaluate whether myocardial involvement correlates with functional and laboratory parameters.

Methods: Thirty-three asymptomatic SSc patients (29 women, aged 56.6 ± 12.2 years) and 20 controls (10 women, 53.7 ± 13.1 years) were examined using CMR echocardiography, functional pulmonary test and laboratory assessment.

Results: SSc patients had higher ECV (27.5 \pm 2.8 vs. 22.8 \pm 193; P < 0.0001) and native T1 values (1258.9 \pm 512 vs. 1192.2 \pm 32.6, P < 0.0001) compared to controls. Plasma level of growth differentiation factor 15 (GDF-15) and galectin-3 correlated with ECV (r = 0.35; P = 0.0076 and r = 0.38; P = 0.0081) and native T1 (r = 0.31; P = 0.023 and r = 0.35; P = 0.0023). GDF-15 was also negatively correlated with diffusing capacity of the lung for carbon monoxide (r = -0.58; P = 0.0004) and positively correlated with modified Rodnan site stars and every the global longitudinal peak systolic strain (GLPS) was lower in SSc patients and controls. However, the global longitudinal peak systolic strain (GLPS) was lower in SSc patients and controls (18.5 \pm 1.6 vs. 2.11 \pm 12.8; P < 0.0001). GLPS also negatively correlated with native T1 (r = -0.35; P = 0.0037). ECV (r = -0.33; P = 0.01076) and P = 0.022), and galectin-3 (r = -0.37; P = 0.0077). ECV (r = -0.33; P = 0.01076). T1 r = 0.031; P = 0.022, and galectin-3 (r = -0.37; P = 0.0077). In Conclusions: GDF-15 and galectin-3 were positively correlated with myocard all fibrosis parameters. Future outcomestulies must show whether measurement of GDF-15 and galectin-3 in SSC patients might be may be useful in clinical practice.

© 2017 Elsevier B.V. All rights reserved.

GDF-15, galectin-3 a ECV, nativ T1

FN 🕲 🕐 💔

GDF-15 a DLCO, Rodnan Skin Score

FKİ 🕲 🕥 💔

Clinical outcome

- patients with SSc had higher values of ECV and T1 nativ
- correlation of MR parameters with the degree of skin involvement
- correlation of MR parameters with levels of GDF 15 and galectin-3
- GDF-15 corelated with with the degree of skin involvement and DLCO
- Screening testing for GDF 15 a galectin-3 ?
- trend of the disease ?

Goal of the study

- assessment of the trend of myocardial damage by MRI with a 5-year interval
- correlation with biomarkers: hsTnl, NT-proBNP, galectin-3, sST2, GDF-15
- Echocardiography
- pulmonary function tests including DLCO (Diffusing Capacity of Lung for Carbon Monoxide)

Surveyed cohort

- 25/33 patients with SSc diagnosis according to American College of Rheumatology who underwent a baseline study in 2015
- 8 patients could not be reevaluated
- Reasons for exclusions: pregnancy (1 patient), death due to malignancy (2 pts), stroke (1pt.), imobility (1pt.), refusal to follow-up (3 pts)

Exclusion criteria

- current or past cardiac disease
- PAH
- contraindications to perform MRI
- contraindications for administration of Gd contrast agent
- renal dysfunction with GF < 30ml/min
- pregnancy or brest feeding

MRI

- 3 T MR device (MAGENTOM Skyra, Siemens Healtcare, Forcheheim, Germany)..32 element surface coil for thorax and body
- T1 mapping using MOLLLI (Modified Look-Locker Inversion Recovery)
- Four-chamber projection and short axis from base to apex before and after Gd administration (12 min apart)

T1 mapping technique

- colour maps of T1 relaxation time (ms)
- pixel-based parametric imaging
- higher values for edema and connective tissue transformation

Source: prof. MUDr. J.Baxa, Ph.D., University Hospital Pilsen

Measurement of T1 relaxation time before and after Gd

- using a region of interest (ROI)
- ROI placed manually in the intramyocardial part of the LV septum, main values from basal, mid-ventricular and apical

Source: prof. MUDr. J.Baxa, Ph.D., University Hospital Pilsen

Extracelular volume

- increase in ECV (%) during fibrotic transformation
- calculation from T1 maps (before and after contrast + HCT)

ECV (%) =
$$\frac{(1 - HTK) x \left(\frac{1}{T_1 (Gd)} - \frac{1}{T_1 (nat)}\right)}{\frac{1}{T_1 (Gd)} - \frac{1}{T_1 (nat)}}$$

Cohort of patients

Baseline	Follow-up	Р
134.8 ± 17.4	135.6 ± 14.8	0.6800
82.6 ± 9.5	82.0 ± 9.3	0.7200
26.1 ± 4.4	26.7 ± 4.5	0.0090
0 (0.0)	12 (48.0)	<0.001
16 (64.0)	16 (64.0)	1.0000
13 (52.0)	14 (56.0)	0.9870
17.3 ± 4.3	17.9 ± 4.4	0.0020
80.7 ± 15.1	77.7 ± 13.9	0.0043
1253.4 ± 56.8	1251.5 ± 64.6	0.9500
0.28 ± 0.03	0.29 ± 0.04	0.0730
63.1 ± 2.1	62.8 ± 2.5	0.5790
9.26 ± 3.1	10.24 ± 4.8	0.3098
3.0 (2.0–5.8)	2.8 (2.2–8.7)	0.4800
141.88 ± 102.87	194.12 ± 218.46	0.6567
3.45 ± 1.88	3.51 ± 1.80	0.7000
1358.6 ± 410.2	1645.8 ± 725.0	0.0078
1042 (791–1525)	1299 (1061–1843)	0.0046
	Baseline 134.8 ± 17.4 82.6 ± 9.5 26.1 ± 4.4 $0 (0.0)$ $16 (64.0)$ $13 (52.0)$ 17.3 ± 4.3 80.7 ± 15.1 1253.4 ± 56.8 0.28 ± 0.03 63.1 ± 2.1 9.26 ± 3.1 $3.0 (2.0-5.8)$ 141.88 ± 102.87 3.45 ± 1.88 1358.6 ± 410.2 $1042 (791-1525)$	BaselineFollow-up134.8 ± 17.4135.6 ± 14.8 82.6 ± 9.5 82.0 ± 9.3 26.1 ± 4.4 26.7 ± 4.5 0 (0.0)12 (48.0)16 (64.0)16 (64.0)13 (52.0)14 (56.0)13 (52.0)14 (56.0)17.3 \pm 4.317.9 \pm 4.480.7 \pm 15.177.7 \pm 13.91253.4 \pm 56.81251.5 \pm 64.60.28 \pm 0.030.29 \pm 0.0463.1 \pm 2.162.8 \pm 2.59.26 \pm 3.110.24 \pm 4.83.0 (2.0-5.8)2.8 (2.2-8.7)141.88 \pm 102.87194.12 ± 218.463.45 ± 1.883.51 ± 1.801358.6 \pm 410.21645.8 ± 725.01042 (791-1525)1299 (1061-1843)

Source: Hromadka, M.; Baxa, J.; Seidlerova, J.; Miklik, R.; Rajdl, D.; Sudova, V.; Suchy, D.; Rokyta, R. Myocardial Involvement Detected Using Cardiac Magnetic Resonance Imaging in Patients with Systemic Sclerosis: A Prospective Observational Study. J. Clin. Med. **2021**, 10, 5364. <u>https://doi.org/</u> 10.3390/jcm10225364

Change trends after 5 years

Changes in	Native T1	ECV	DL _{co}	mRSS
hsTnI	0.14	0.05	-0.11	0.15
P	0.52	0.83	0.60	0.48
Galectin-3	0.56	0.71	-0.12	0.06
P	0.0050	0.0001	0.57	0.77
sST2	0.05	0.07	-0.09	0.14
P	0.83	0.75	0.68	0.51
GDF 15	0.23	0.25	-0.51	0.63
P	0.29	0.24	<mark>0.011</mark>	0.0009
NT-proBNP	-0.0739	0.0569	-0.1005	0.3819
P	0.73	0.79	0.63	0.059

Source: Hromadka, M.; Baxa, J.; Seidlerova, J.; Miklik, R.; Rajdl, D.; Sudova, V.; Suchy, D.; Rokyta, R. Myocardial Involvement Detected Using Cardiac Magnetic Resonance Imaging in Patients with Systemic Sclerosis: A Prospective Observational Study. J. Clin. Med. **2021**, 10, 5364. https://doi.org/10.3390/jcm10225364

T1 mapping

zdroj prof. MUDr. J.Baxa, Ph.D FN Plzeň

Therapy with RAAS blocators

Changes in	RAAS blockers 0 n = 13	RAAS blockers 1 n = 12	Р
native T1, ms	4.28 ± 36.5	-8.47 ± 46.8	0.30
ECV, %	0.023 ± 0.025	0.005 ± 0.043	0.073
galectin-3, ng/ml	1.35 ± 1.90	-1.31 ± 2.07	0.0068
GDF 15, ng/ml	522.8 ± 718.5	221.0 ± 518.8	0.30
sST2, ng/ml	492.37 ± 459.75	82.16 ± 484.61	0.015
hsTnI, ng/l	-2.20 ± 30.73	-3.71 ± 11.01	0.023
NT-proBNP, ng/l	130.30 ± 268.95	32.67 ± 135.25	0.16

Hromadka, M.; Baxa, J.; Seidlerova, J.; Miklik, R.; Rajdl, D.; Sudova, V.; Suchy, D.; Rokyta, R. Myocardial Involvement Detected Using Cardiac Magnetic Resonance Imaging in Patients with Systemic Sclerosis: A Prospective Observational Study. J. Clin. Med. **2021**, 10, 5364. <u>https://doi.org/</u> 10.3390/jcm10225364

RAAS blocators and galectin-3

RAAS blockers and galectin-3

Source: Hromadka, M.; Baxa, J.; Seidlerova, J.; Miklik, R.; Rajdl, D.; Sudova, V.; Suchy, D.; Rokyta, R. Myocardial Involvement Detected Using Cardiac Magnetic Resonance Imaging in Patients with Systemic Sclerosis: A Prospective Observational Study. J. Clin. Med. **2021**, 10, 5364. <u>https://doi.org/</u> 10.3390/jcm10225364

Δ galectinu-3 and T1-mapping

Source: Hromadka, M.; Baxa, J.; Seidlerova, J.; Miklik, R.; Rajdl, D.; Sudova, V.; Suchy, D.; Rokyta, R. Myocardial Involvement Detected Using Cardiac Magnetic Resonance Imaging in Patients with Systemic Sclerosis: A Prospective Observational Study. J. Clin. Med. **2021**, 10, 5364. <u>https://doi.org/</u> 10.3390/icm10225364

Δ galectinu-3 and ECV

Source: Hromadka, M.; Baxa, J.; Seidlerova, J.; Miklik, R.; Rajdl, D.; Sudova, V.; Suchy, D.; Rokyta, R. Myocardial Involvement Detected Using Cardiac Magnetic Resonance Imaging in Patients with Systemic Sclerosis: A Prospective Observational Study. J. Clin. Med. **2021**, 10, 5364. <u>https://doi.org/</u> 10.3390/jcm10225364

Conclusion

- Progression of subclinical myocardial fibrosis significantly correlates with galectin-3 elevation
- GDF-15 is associated with progression of skin involvement and decrease in DLCO
- RAAS inhibitor treatment correlates with galectin-3, hsTnI and sST2 levels
- Modulation of the fibrotic process by RAAS blockers ?

Thank you for your attention

