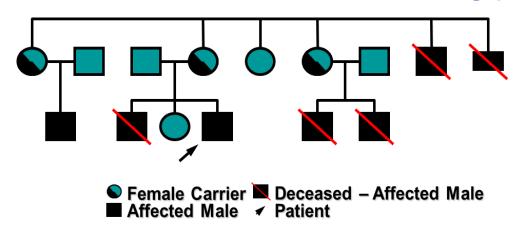
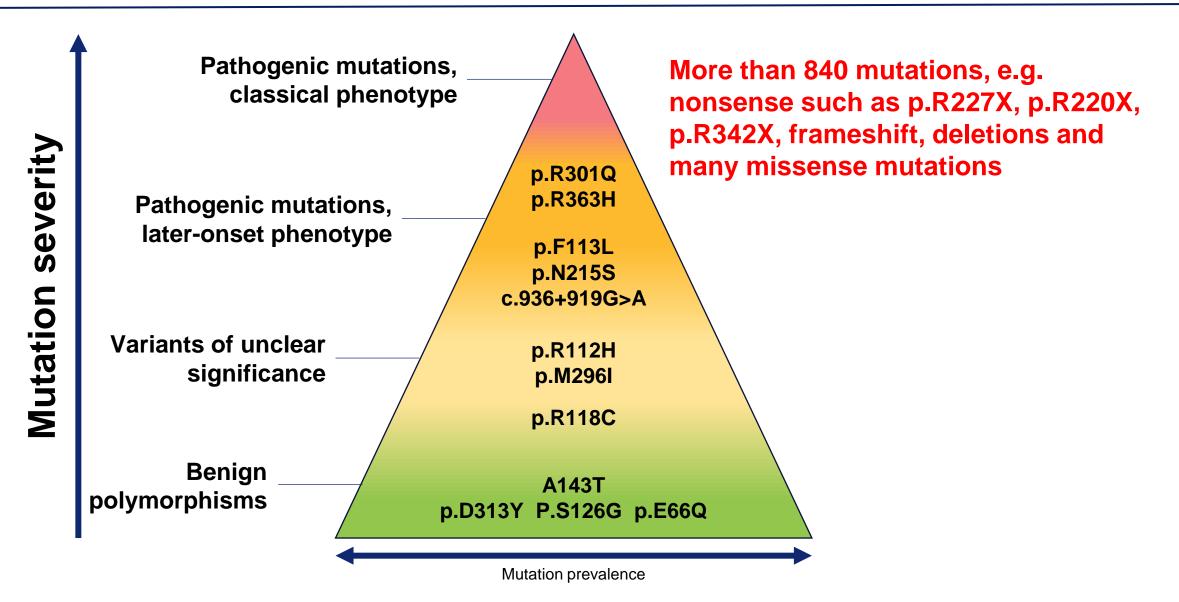
NATION-WIDE SCREENING OF FABRY DISEASE IN PATIENTS WITH HYPERTROPHIC CARDIOMYOPATHY IN CZECH REPUBLIC (BY DRY BLOOD SPOT METHOD)

Aleš Linhart

First Medical Faculty
Charles University
General University Hospital
Prague
Czech Republic


GENERAL UNIVERSITY

HOSPITAL IN PRAGUE



Fabry disease

- Human lysosomal storage disorder (LSD)
- X-linked disorder of glycosphingolipid metabolism
- α-Galactosidase A deficiency (α-gal A)
- the gene on Xq22 >841 mutations identified (pathogenicity?)
- Frequency
 - > classical variant 1:30-40.000 male births
 - > 1:2.500-3.000 based on neonatal screening (enzymatic...)

Pathogenicity of mutations in Fabry disease

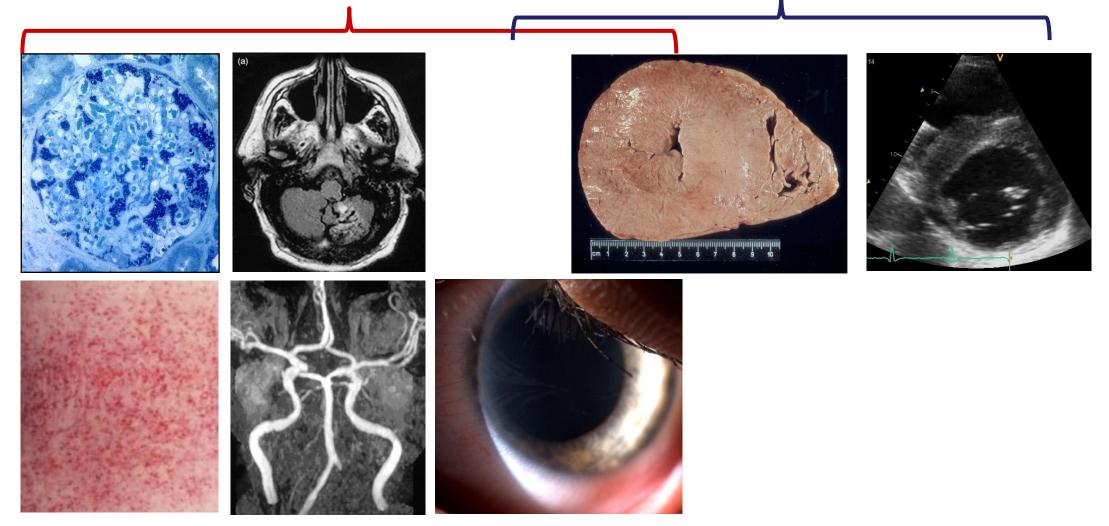
Cardiocyte storage and hypertrophy as a sole manifestation of Fabry's disease

Report on a case simulating hypertrophic non-obstructive cardiomyopathy

M. Elleder¹, V. Bradová¹, F. Šmíd¹, M. Buděšínský⁵, K. Harzer⁴, B. Kustermann-Kuhn⁴, J. Ledvinová², Bělohlávek³, V. Král⁶, and V. Dorazilová¹

Figure from Elleder M, *et al.*Gb3, globotriaosylceramide; LV, left ventricular
Elleder M, *et al. Virchows Arch A Pathol Anat Histopathol.* 1990;417:449–455

LV hypertrophy in a 63-year-old male with Fabry disease: LV mass 1100 g


Gb3 content: 1%

Based on offspring genetic analysis: N215S mutation

Fabry Phenotypes

Classical / multiorgan

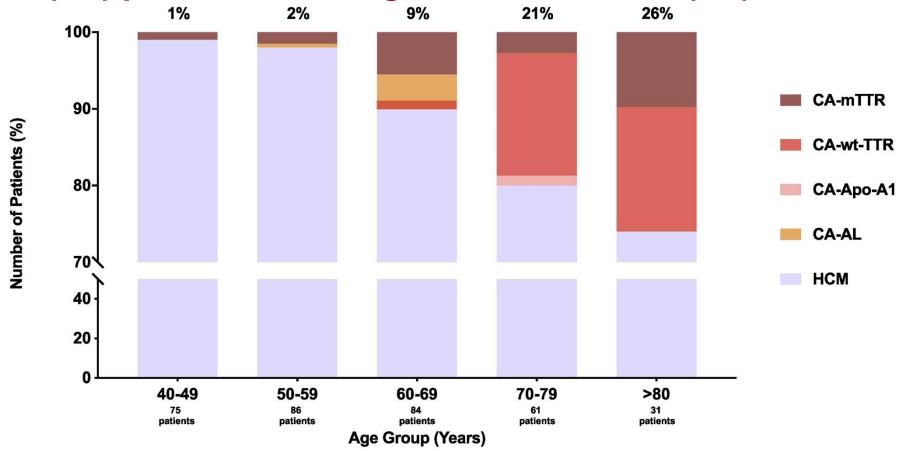
Late onset / variant

Adapted from: Mehta et al. Eur J Clin Invest (2004)34: 236–242; Hegemann, S. Eur J Clin Invest. 2006 Sep;36(9):654-62.; Burlina et al. J Neurol 2008;255:738–744; Elleder et al. Virchows Arch A Pathol Anat Histopathol. 1990;417(5):449-55.

Hypertrophic cardiomyopathy?

Presence of increased left ventricular (LV) wall thickness that is not solely explained by abnormal loading conditions.

In an adult ≥15 mm in one or more LV myocardial segments by any imaging technique


- ~ In relatives ≥13 mm
- Genetic & nongenetic disorders 13–14 mm

In children > 2 SD of the predicted mean (z-score >2)

Misdiagnosis in patients with tentative dg. of HCM

343 consecutive patients aged ≥40 years referred with a tentative HCM diagnosis in the period 2014–201

32(9%) patients were diagnosed with CA + 6 (2%) variants in GLA gene

Maurizi et al. Int J Cardiol 300 (2020) 191-195

Revisited prevalence of FD among high risk populations

- haemodialysis n= 36 820 (23 954 M and 12 866 F)
 - 0.21% males
 - 0.15% females
- renal transplant n = 3 074 (2 031M and 1 043F)
 - 0.25% males
 - no females
- LVH / HCM n = 5491 (4054M and 1437F)
 - 0.94% males
 - 0.90% females
- stroke n = 5978 (3 904 M and 2 074 F)
 - 0.13% males
 - 0.14% females

ORIGINAL ARTICLE

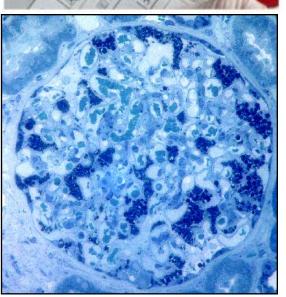
Prevalence of Fabry disease in male patients with unexplained left ventricular hypertrophy in primary cardiology practice: prospective Fabry cardiomyopathy screening study (FACSS)

Tomas Palecek • Jitka Honzikova • Helena Poupetova • Hana Vlaskova • Petr Kuchynka • Lubor Golan • Sudheera Magage • Ales Linhart

Patient number	Age (years)	Maximal LV wall thickness (mm)	Conduction disease	NYHA class	Renal function	AGAL activity in leukocytes (nmol/hour/mg protein)*	Mutation in the GLA gene
1	56	21	Incomplete RBBB	2	Normal	3.31	c.[801+48 T>G];[0], r.[801_802ins801+1_801+66;801+48U>G]
2	48	14	Incomplete RBBB	1	Normal	1.50	c.[454 T>C];[0]
3	49	17	-	2	Normal	3.52	c.[801+48 T>G];[0], r.[801_802ins801+1_801+66;801+48U>G]
4	53	19	Short PR interval with delta wave and incomplete RBBB	2	Decreased	4.82	c.[644A>G];[0]

AGAL, α-galactosidase A; LV, left ventricular; RBBB, right bundle branch block

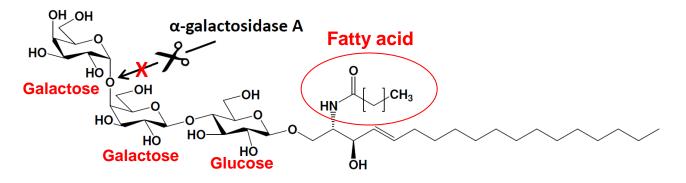
^{*}normal range 25–76 nmol/h/mg protein; mean \pm SD 47.1 \pm 10.2 nmol/h/mg protein

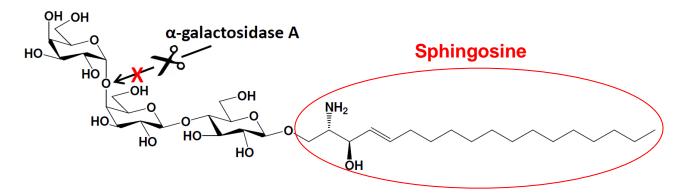

How were the patients diagnosed in the Czech Republic?

23.5 % of cases were identified by high-risk populations screening

Fabry disease diagnosis

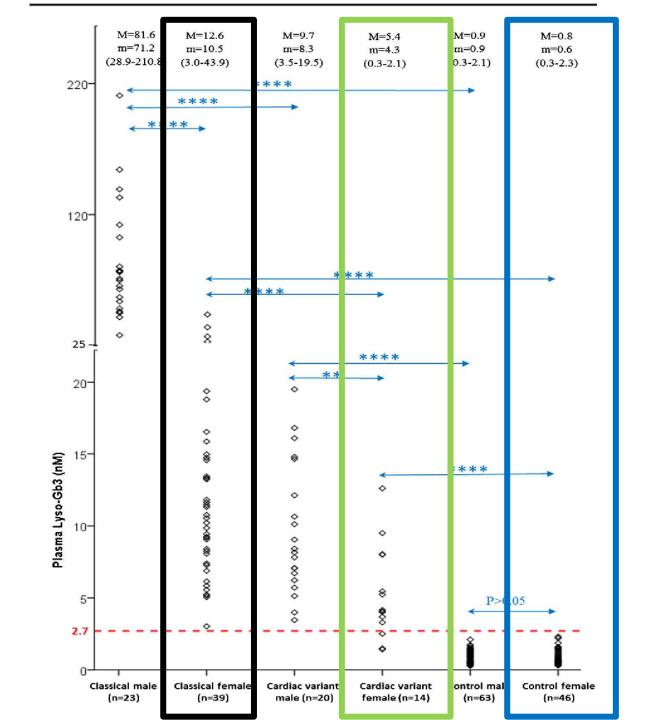
- Typical symptoms
 - pain, proteinuria, renal failure, skin and ocular manifestations, cardiomyopathy, early stroke
- α-Galactosidase A activity
 - leukocytes, fibroblasts, plasma
 - dry blood spot
- Lyso Gb₃ concentrations
 - plasma, DBS
 - low in late onset variants and females
- Biopsy (renal, cardiac, GIT???)
- Gene sequencing (females!!!)




Author's own opinion

Gb₃ and Lyso-Gb₃

Globotriaosylceramide (Gb₃)

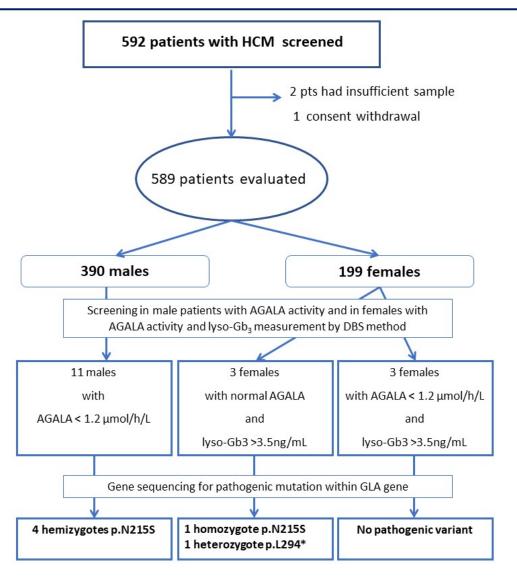


Globotriaosylsphingosine (Lyso-Gb₃)

Biomarkers Depend on Gender and Mutation Type

Alharbi et al. J Inherit Metab Dis. 2018 Mar;41(2):239-247

Nationwide screening of Fabry disease in patients with hypertrophic cardiomyopathy in Czech Republic


David Zemánek¹, Jaroslav Januška², Tomáš Honěk³, Karol Čurila⁴, Miloš Kubánek⁵, Štěpánka Šindelářová⁶, Lucie Zahálková⁷, Petr Klofáč⁸, Eliška Laštůvková⁹, Eva Lichnerová¹⁰, Renata Aiglová¹¹, Jan Lhotský¹², Jiří Vondrák¹³, Gabriela Dostálová¹, Miloš Táborský¹¹, David Kasper¹⁴ and Aleš Linhart^{1*}

¹2nd Department of Internal Medicine Cardiology and Angiology, General University Hospital and 1st Faculty of Medicine of Charles University, Prague, Czech Republic; ²Cardiocentre Podlesí, Třinec, Czech Republic; ³Ist Department of Internal Medicine - Cardioangiology, St Anne's University Hospital and Masaryk University, Brno, Czech Republic; ⁴Department of Cardiology, 3rd Faculty of Medicine, Charles University and University Hospital Kralovské Vinohrady, Prague, Czech Republic; ⁵Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; ⁶Department of Cardiology, Hospital České Budějovice, České Budějovice, Czech Republic; ⁸Department of Medicine - Cardioangiology, Charles University Faculty of Medicine and University Hospital, Hradec Králové, Czech Republic; ⁸Department of Cardiology, Regional Hospital Liberec, Liberec, Czech Republic; ⁹Department of Cardiology, Hospital Jihlava, Jihlava, Czech Republic; ¹⁰Department of Cardiovascular Disease, University Hospital in Ostrava, Ostrava, Czech Republic; ¹¹Department of Internal Medicine I - Cardiology, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic; ¹²Department of Cardiology, University Hospital and Faculty of Medicine Pilsen, Charles University, Prague, Czech Republic; ¹³Department of Cardiology, Regional Hospital Pardubice and Faculty of Health Studies, University of Pardubice, Pardubice, Czech Republic; and ¹⁴ARCHIMED Life Science GmbH, Vienna, Austria

Organization and inclusion criteria

- The screening 1 June 2 017 31 December 2018 (at least 12 months in each centre).
- HCM was defined by the presence of increased LV wall thickness (≥15 mm) in one or more myocardial segments on echocardiography, MRI, or cardiac CT.
- Patients with known FD and HCM phenocopies including infiltrative diseases (e.g. amyloidosis) were excluded.
- All patients had to be older than 18 years
- Informed consent

Nationwide screening of Fabry disease in HCM patients – The Czech Republic experience

In males AGALA activity <1.2 µmol/h/L

in females with either low AGALA activity or lyso-Gb3 > 3.5 ng/mL

Zemánek et al. ESC Heart Failure(2022)

Fabry Screening Programme in hypertrophic cardiomyopathy in the Czech Republic

Lead investigators: David Zemánek and Aleš Linhart

589 patients (390 males, 66%)

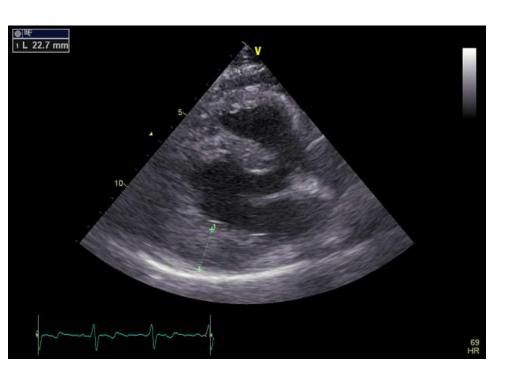
DBS (Archimed)

17 patients (11 males, 65%) – screened positive

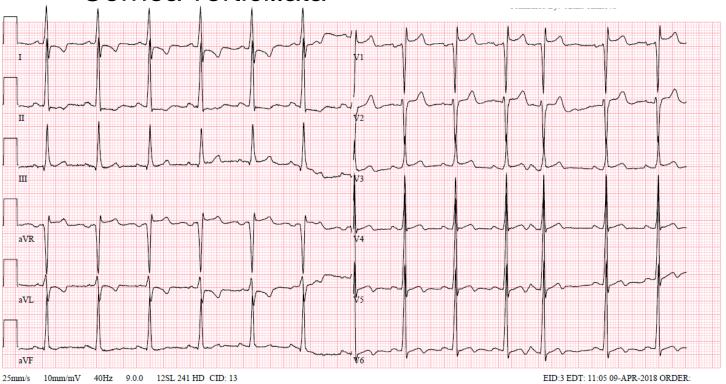
6 patients (4 males, 67%) confirmed by gene sequencing

Characteristics of Czech patients with HCM

Age (years)	58.4 ± 14.7
Males (n; %)	390; 66%
Maximal LV wall thickness (mm)	19.1 ± 4.3
Family history of hypertrophic cardiomyopathy (n; %)	102; 17%
Presence of LVOT obstruction (n; %)	259; 44%
ICD implantation (n; %)	94; 16%
Fabry non-cardiac manifestation (n; %)	124; 21%
- Proteinuria or renal insufficiency	61; 10%
- Acroparesthesia	39; 7%
- Stroke/TIA	38; 6%
- Angiokeratoma, cornea verticillata	5; 1%

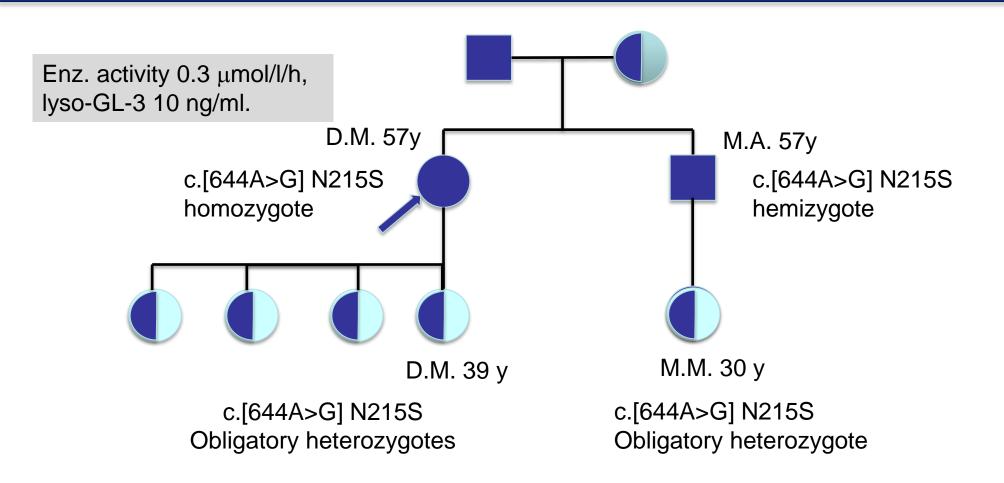

ICD = implantable cardioverter-defibrillator, LV = left ventricle, LVOT = left ventricular outflow tract, TIA = transitory ischemic attack

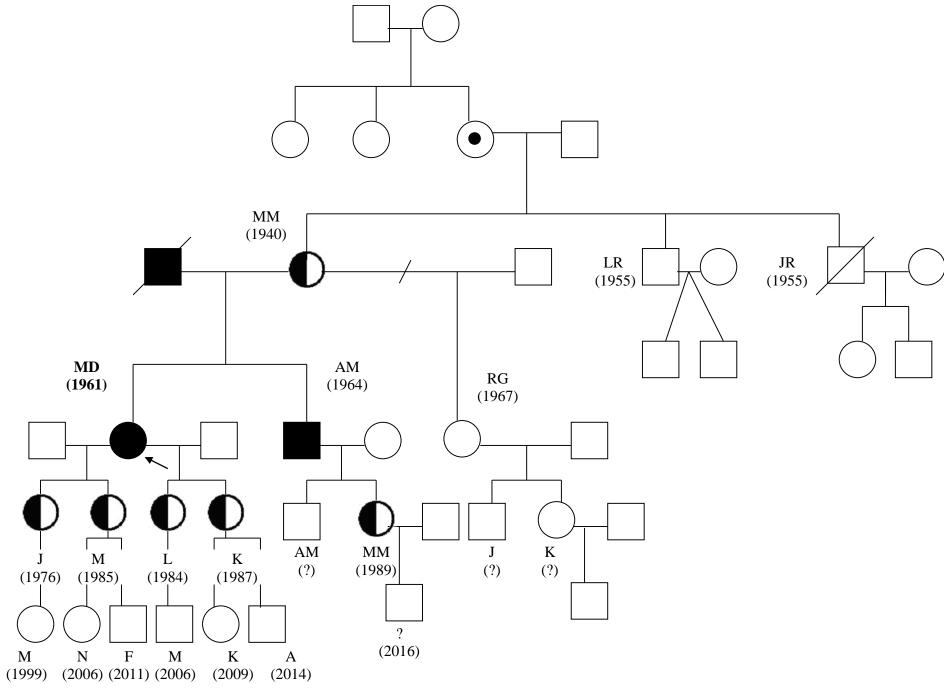
Fabry Screening Programme in the Czech Republic

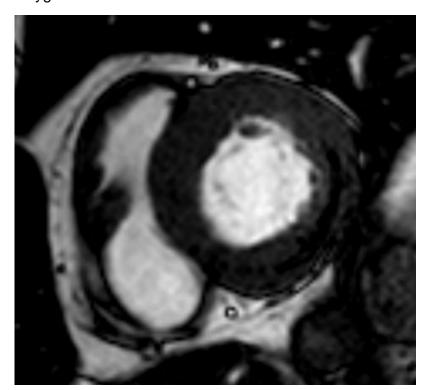

Sex	Age	Gene mutation	AGAL activity (µmol/l/h)	Lyso- Gb3 (ng/mL)	Max. wall thickness (mm)	LVOTO	ICD	Positive family history	Non-cardiac FD manifestation
M	56	N215S	0.4	-	30	yes	no	no	no
M	57	N215S	0.7	-	23	no	no	no	no
F	56	N215S	0.3	10.0	24	yes	yes	yes	Proteinuria Acroparesthaesia
M	66	N215S	0.3	-	24	no	no	yes	Proteinuria
F	53	L294*	0.6	16.0	18	no	no	no	no
M	55	N215S	0.3	-	20	no	no	no	no

AGAL, α-galactosidase A; FD, Fabry disease; ICD, implantable cardioverter defibrillator; LVOTO, left ventricular outflow tract obstruction Zemánek and Linhart, submitted

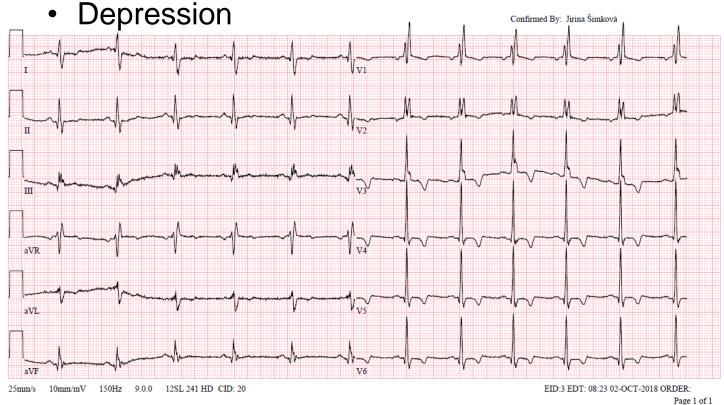
D.M. 57y c.[644A>G] N215S homozygote D.M. 39y M.M. 30y c.[644A>G] N215S heterozygote M.M. 30y c.[644A>G] N215S heterozygote

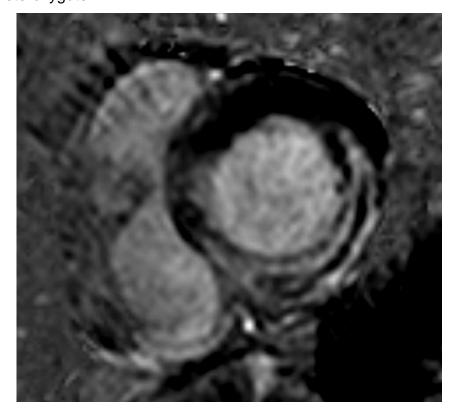


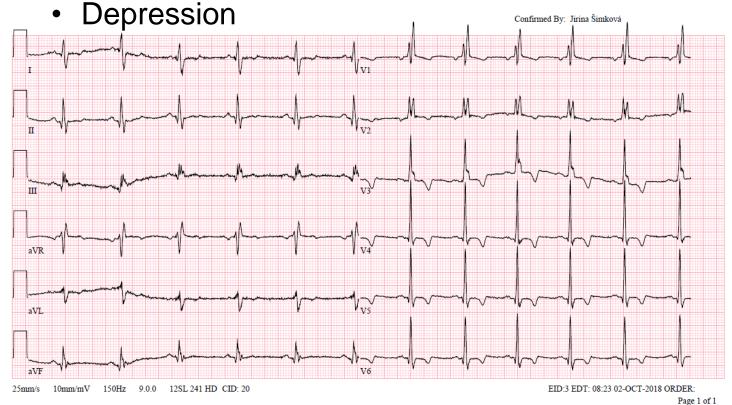

- **N215S** homozygote
 - 2017 septal reduction alcohol ablation
 - 2017 ICD implantation
 - FD diagnosed by a screening study in HCM
 - Acroparesthesias
 - Borderline eGFR, microalbuminuria
 - Cornea verticillata


eGFR, estimated glomerular filtration rate; FD, Fabry disease; HCM, hypertrophic cardiomyopathy; ICD, implantable cardioverter defibrillator Cases and imaging source: General University Hospital, Prague, CZ

Index patient D.M. – female

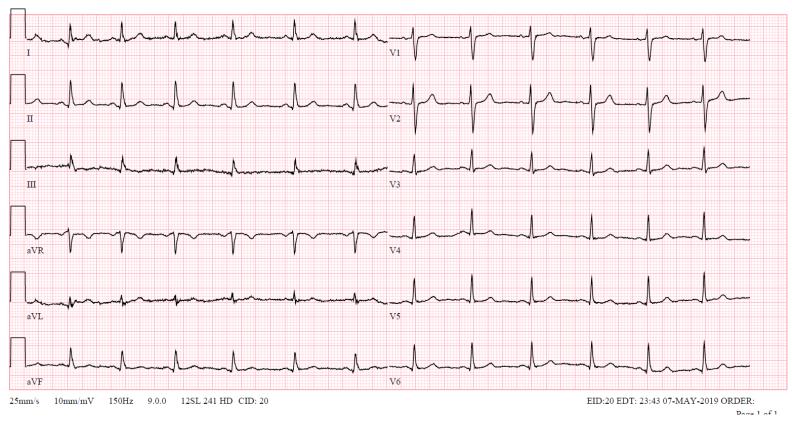



D.M. 57y c.[644A>G] N215S homozygote D.M. 39y c.[644A>G] N215S heterozygote M.A. 57y c.[644A>G] N215S heterozygote M.M. 30y c.[644A>G] N215S heterozygote

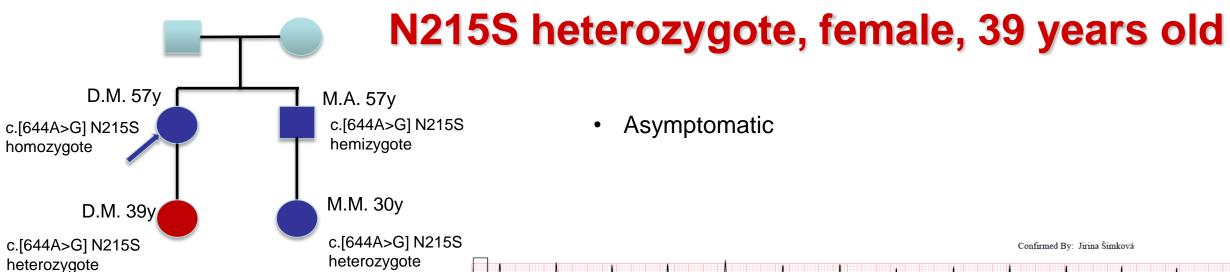

- N215S hemizygote, male, 57 years old
 - NYHA III (max. exercise tolerance 100 W)
 - Peripheral neuropathy
 - Hypacusis
 - Vessel tortuosities
 - Microalbuminuria

D.M. 57y c.[644A>G] N215S homozygote D.M. 39y C.[644A>G] N215S heterozygote N.A. 57y C.[644A>G] N215S heterozygote M.M. 30y C.[644A>G] N215S heterozygote

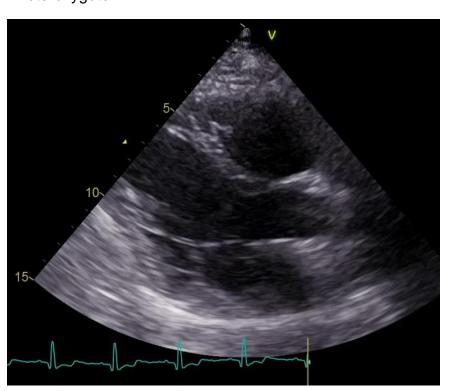
- N215S hemizygote, male, 57 years old
 - NYHA III (max. exercise tolerance 100 W)
 - Peripheral neuropathy
 - Hypacusis
 - Vessel tortuosities
 - Microalbuminuria

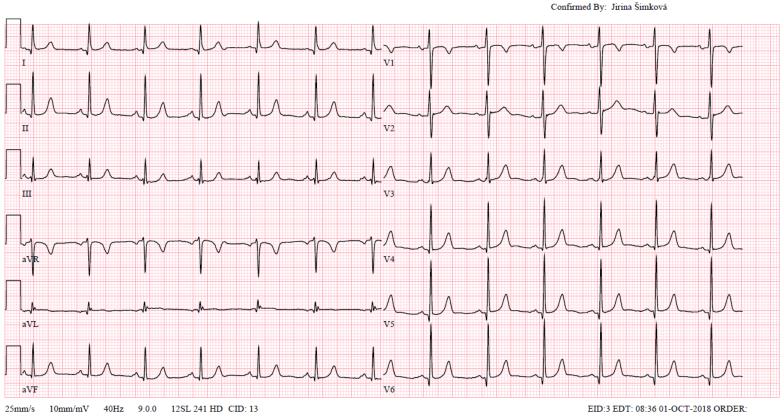


NYHA, New York Heart Association Cases and imaging source: General University Hospital, Prague, CZ

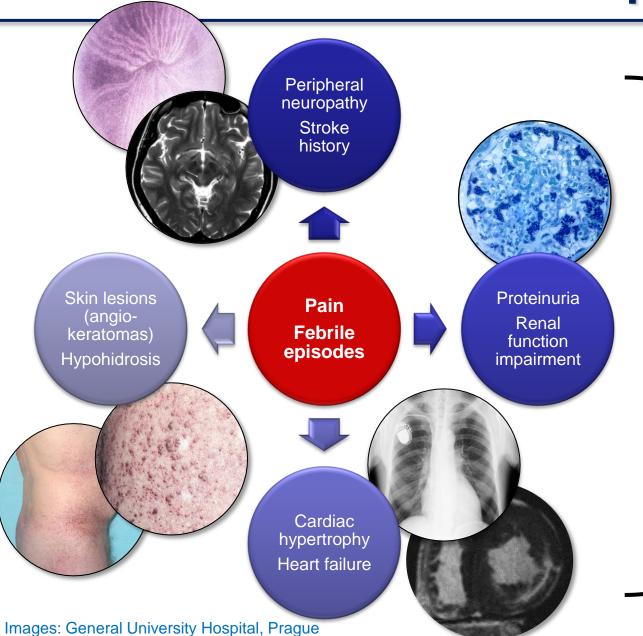

N215S heterozygote, female, 39 years old D.M. 57y | M.A. 57y c.[644A>G] N215S c.[644A>G] N215S hemizygote homozygote M.M. 30y D.M. 39y c.[644A>G] N215S c.[644A>G] N215S heterozygote heterozygote

7:04:33

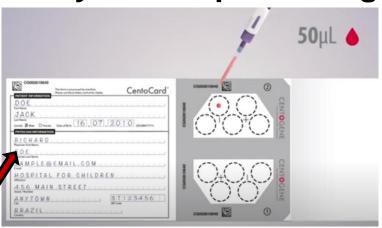

- Posterior wall 10 mm
- LA enlargement
- Microalbuminuria

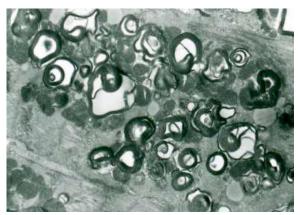


LA, left atrial Cases and imaging source: General University Hospital, Prague, CZ



Asymptomatic




When to suspect Fabry?

Dry blood spot testing

Biopsy – kidney, heart, skin

Fabry disease in cardiology

HCM is a common pathology

Fabry Disease is one of the most frequent mimics of HCM

Diagnosis can be made by enzyme activity and Lyso-Gb₃ measurements on Dry Blood Spots or by gene sequencing (in females or systematic)

All diagnosed patients identified by the screening are on targeted therapy

