## Arrhythmogenic Cardiomyopathy: Controversies to guide future directions

### William J. McKenna, MD DSc FRCP FESC



UCL - London



Heart Hospital - Doha

Arrhythmogenic Cardiomyopathy: Introduction - Controversies

- Nomenclature
- Diagnosis
- Aetiology
- Pathogenesis
- Management

## Cardiomyopathy

• Chronic disease of the heart muscle

## Dysplasia

- From the Greek dys (bad, disordered, abnormal) and plassein (to form)
- When applied to organ/ macroscopic structure (e.g., hip), a developmental anomaly
- When applied to tissue/ cells, refers to proliferation of abnormal/ immature/ poorly differentiated/ pre-malignant cells
- Neither scenario applies to ARVC

## Name defines the brand, person, place,.... disease



## Name defines a phenotype













## Evolution of nomenclature

### 1982

Arrhythmogenic Right Ventricular Dysplasia

#### 1994

Diagnosis of Arrhythmogenic Right Ventricular Dysplasia / Cardiomyopathy

### 2010

Diagnosis of Arrhythmogenic Right Ventricular Cardiomyopathy / Dysplasia (ARVC/D)

### 2011 Arrhythmogenic Cardiomyopathy



What constitutes a 'diagnosis'?

- Pathology
- Clinical phenotype
- Genetics

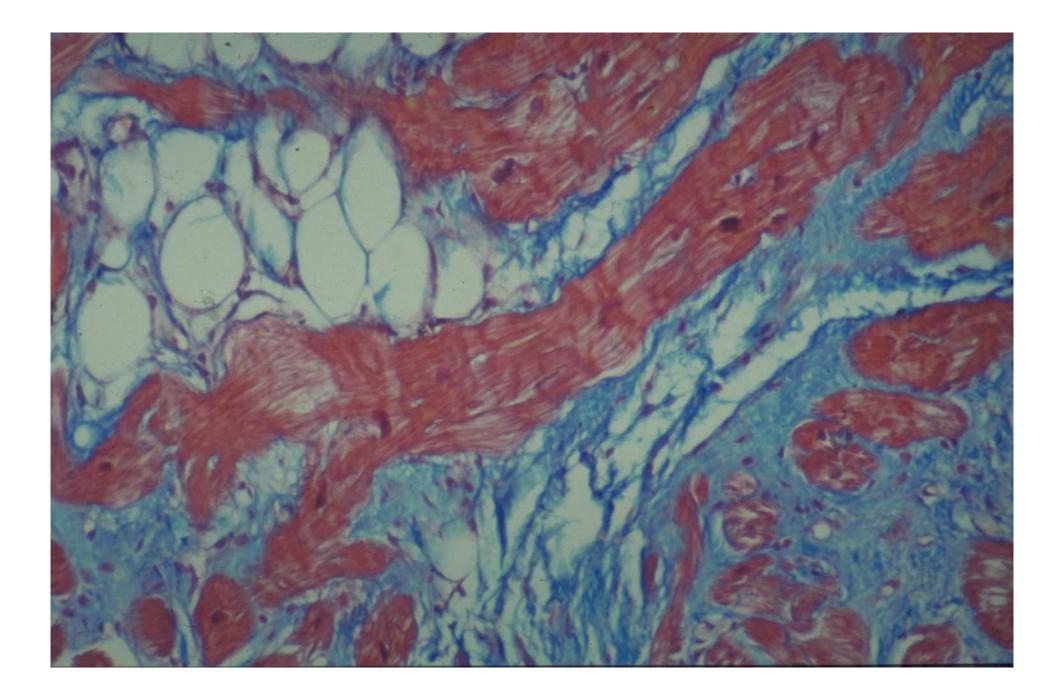
### Perspectives in ARVC

• Pathologist

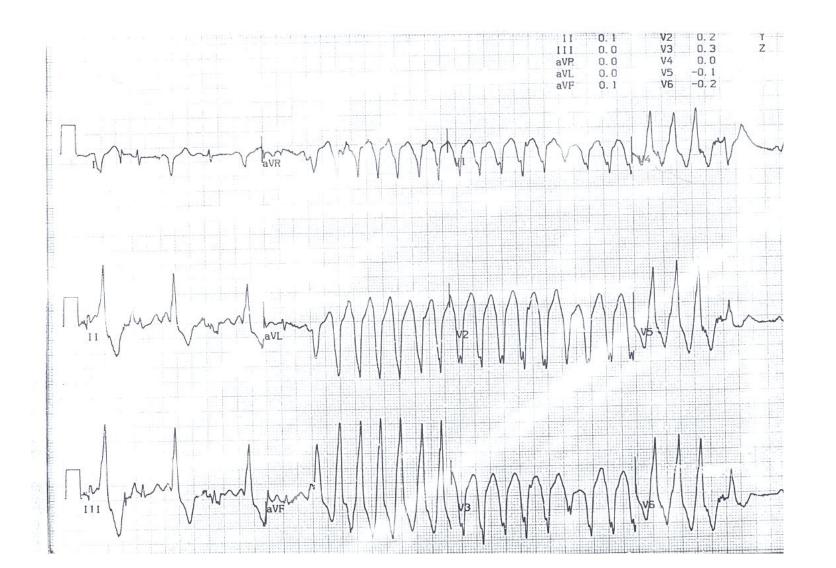
• Geneticist

regional RV disease Arrhythmologist presentation with arr

presentation with arrhythmias – LBBB VT

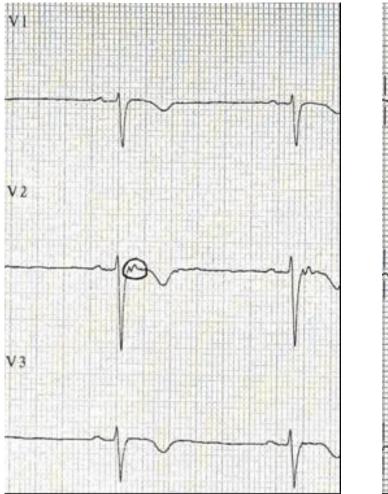

presentation with sudden death –

pedigree evaluation – broad phenotype / incomplete disease expression

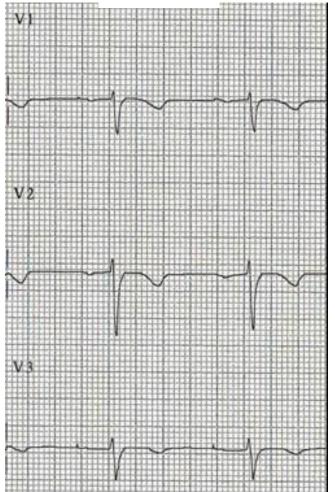

## Arrhythmogenic Right Ventricular Cardiomyopathy



 Dx- structural, functional and electrophysiologic abnormalities, secondary to fibrofatty replacement of RV ± LV myocytes

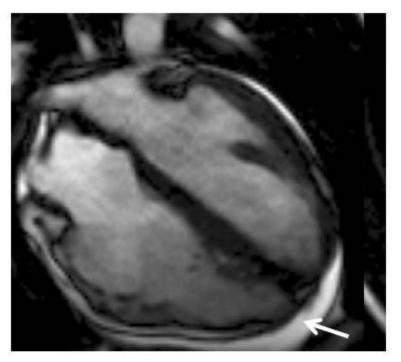



### Exercise Test: 4.5min

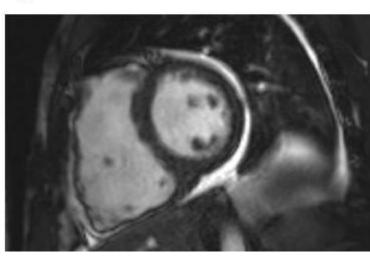



### ARVC

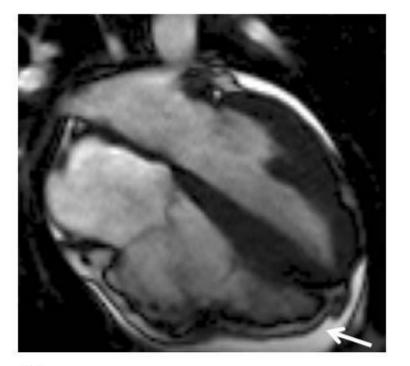
12/11/2003



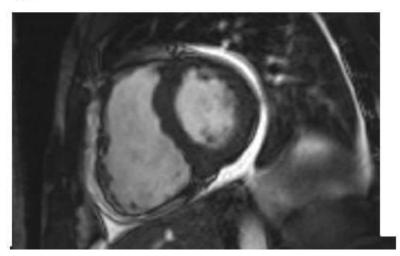

#### 02/02/2005




### Figure 4


А




С

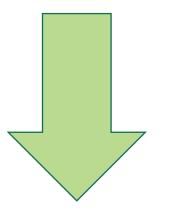


В



D




| <b>ARVC/D</b> Diagnostic         |                              | Major                                                           | Minor                                                                     |  |  |
|----------------------------------|------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|--|--|
|                                  | 2-D echo and MRI             | RV dysfunction/aneurysm                                         | RV dysfunction                                                            |  |  |
| Criteria                         |                              | 个 volume (95% sp)                                               | 个 volume (87% sp)                                                         |  |  |
| Marcus et al, Circulation 2010   | Tissue characterization on   | Fibrous replacement of the RV free wall                         | Fibrous replacement of the RV free wall                                   |  |  |
|                                  | endomyocardial biopsy        | myocardium in at least one sample, with or without              | myocardium in at least one sample, with or without                        |  |  |
|                                  |                              | fatty replacement of tissue.                                    | fatty replacement of tissue.                                              |  |  |
|                                  |                              | Residual myocytes <60% by morphometric analysis,                | Residual myocytes 60-75% by morphometric                                  |  |  |
|                                  |                              | or <50% if estimated                                            | analysis, or 50-65% if estimated                                          |  |  |
|                                  | Electrocardiogram            | Inverted T waves in the right precordial leads (V $_1$ , V $_2$ | Inverted T waves in leads $V_1$ and $V_2$ in the absence                  |  |  |
| Definite diagnosis: 2 major or 1 |                              | and $V_3$ ) or beyond in people >14 years of age, in the        | of complete RBBB, or in $V_4$ , $V_5$ , or $V_6$                          |  |  |
| major and 2 minor criteria or 4  | Repolarization abnormalities | absence of complete RBBB (QRS ≥ 120 msec)                       |                                                                           |  |  |
| minor from different categories  | Electrocardiogram            | Epsilon wave (reproducible low amplitude signals                | Terminal activation duration of QRS ≥55 ms                                |  |  |
| Ŭ                                |                              | between end of QRS complex to onset of the T-                   | measured to the end of the QRS, including R prime,                        |  |  |
| Borderline: 1 major and 1 minor  | Depolarization abnormalities | wave)                                                           | in $\rm V_1$ or $\rm V_2$ or $\rm V_3$ , in the absence of complete RBBB. |  |  |
| or 3 minor from different        |                              |                                                                 | Late potentials by signal averaged ECG in at least                        |  |  |
| categories                       |                              |                                                                 | one of the 3 parameters in the absence of a QRS                           |  |  |
| Suspected: 1 major or 2 minor    |                              |                                                                 | duration of ≥110 msec on the standard ECG                                 |  |  |
| from different categories        |                              |                                                                 | Filtered QRS duration (fQRS) $\geq$ 114 msec                              |  |  |
| Unlikely: 1 minor                |                              |                                                                 | Duration of terminal QRS < 40 $\mu$ V (LAS) $\geq$ 38 ms                  |  |  |
|                                  |                              |                                                                 | RMS voltage of terminal 40 ms ≤20 µV                                      |  |  |
|                                  | Arrhythmias                  | Non-sustained or sustained VT of LBBB morphology                | Non-sustained or sustained VT of LBBB morphology                          |  |  |
|                                  |                              | excluding typical RVOT morphology (positive QRS in              | of RVOT axis (see above) or of unknown axis.                              |  |  |
|                                  |                              | II, III, aVF and negative in aVL                                | > 500 ventricular extrasystoles / 24 hours by Holter                      |  |  |
|                                  | Family history / Genetics    | Familial disease confirmed pathologically at                    | Familial disease confirmed in a first-degree relative                     |  |  |
|                                  |                              | necropsy or surgery in a first-degree relative                  | who meets Task Force Criteria without ARVC/D                              |  |  |
|                                  |                              | A pathogenic** mutation in the proband or carrier               | pathogenic desmosomal mutation(s)                                         |  |  |
|                                  |                              | status of pathogenic desmosomal mutation in a                   | A desmosomal mutation in the proband which is                             |  |  |
|                                  |                              | family member, who may be a healthy carrier***                  | normal and/or not proven to be disease causing                            |  |  |

## Presentation of ARVC

- Concealed phase
  - Sporadic ventricular ectopic beats
  - Subtle ECG/morphological abnormalities
  - Sudden death can occur
- Overt phase
  - Arrhythmia symptoms, sustained VT
  - Diffuse RV/LV structural abnormalities
  - Sudden death can occur
- Advanced disease
  - $\uparrow$  dilatation,  $\downarrow$  contractility of RV, LV
  - Heart failure symptoms, sustained VT

### Clinical Presentation of ARVC

Phenotype differs in relation to stage of disease (age)

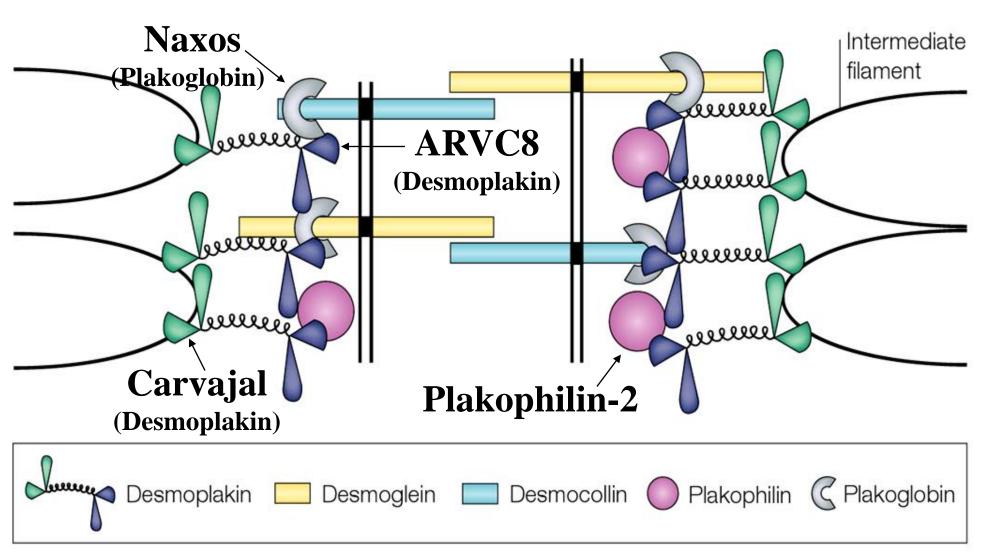


Is this sufficiently taken into account in current diagnostic criteria?

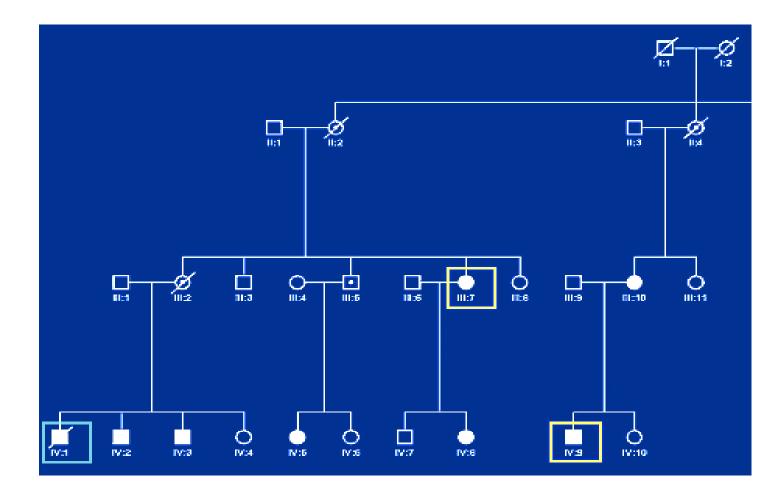
### Autosomal Dominant ARVC Loci

| ARVC1 | 14q23-24 | Rampazzo, 1994 |
|-------|----------|----------------|
| ARVC2 | 1q42-43  | Rampazzo, 1995 |
| ARVC3 | 14q12-22 | Severini, 1996 |
| ARVC4 | 2q32     | Rampazzo, 1997 |
| ARVC5 | 3p23     | Ahmad, 1998    |
| ARVC6 | 10q22.3  | Melberg, 1999  |
| ARVC7 | 10p12-14 | Li, 2000       |

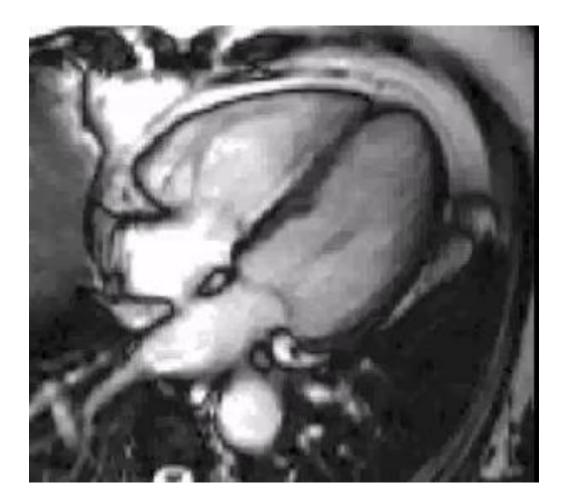
### Naxos Disease


## Autosomal recessive mutation in plakoglobin resulting in truncation of C-terminal amino acids



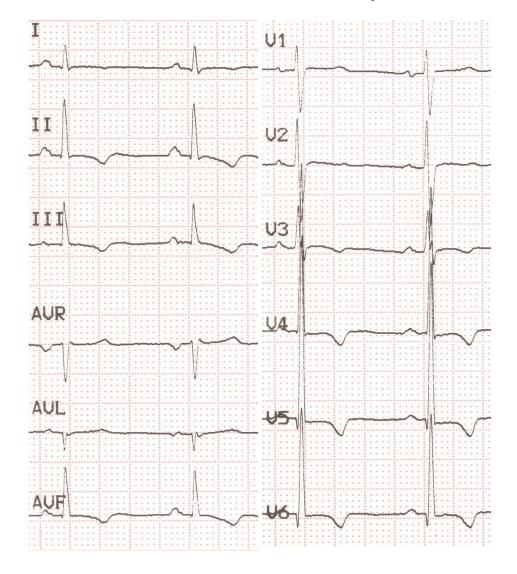

Woolly hair

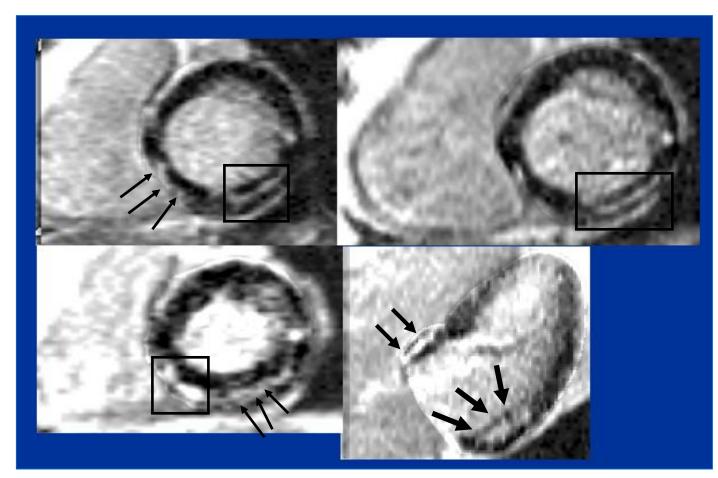
Palmoplantar keratoderma Arrhythmogenic RV Cardiomyopathy


## Disease-Causing Mutations in Desmosomal Proteins



### Arrhythmogenic LV cardiomyopathy

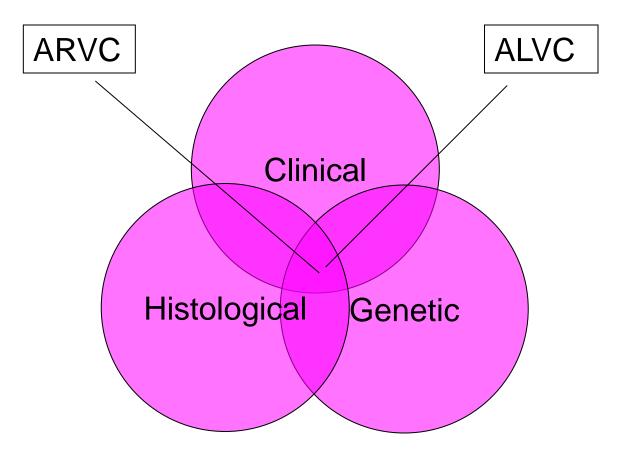




### Case III.7 – True FISP ciné



Four-chamber view

## ALVC Desmoplakin (2034insA mutation)






Circulation, 2005; 112(5):636-42

| ID     | Age | LVED<br>% pred | LVED<br>mm | LVES<br>mm | FS<br>% | Abn CMR<br>gad | ECG                                    | VT/ VES/<br>24hrs |
|--------|-----|----------------|------------|------------|---------|----------------|----------------------------------------|-------------------|
| II.6   | 67  | 142%           | 64         | 48         | 25      | ICD in situ    | T↓ II, III, VF, V4-6                   | RBBB VT*          |
| III.7  | 62  | 109%           | 50         | 28         | 44      | positive       | T↓ II, III, VF, V4-6                   | RBBB VT*          |
| III.10 | 47  | 120%           | 53         | 34         | 36      | ND             | Ν                                      | 1316 R&L VES      |
| III.17 | 41  | 98%            | 42         | 26         | 38      | ND             | T↓ II, III, VF                         | 7 L VES#          |
| III.20 | 46  | 128%           | 64         | 45         | 29      | ND             | T $\downarrow$ II, III, VF, V3-6       | 815 L VES         |
| IV.2   | 36  | 118%           | 51         | 35         | 31      | ICD in situ    | $\downarrow$ R V1-2, T $\downarrow$ V3 | LBBB VT*          |
| IV.3   | 39  | 113%           | 50         | 33         | 34      | ND             | Ν                                      | 3661 R&L VES      |
| IV.5   | 31  | 105%           | 48         | 32         | 33      | positive       | Ν                                      | 1795 L VES        |
| IV.8   | 36  | 125%           | 54         | 38         | 29      | ND             | T↓ II, III, VF, V4-6                   | 5938 L VES        |
| IV.9   | 28  | 127%           | 58         | 43         | 26      | positive       | T↓ V4-6                                | 5612 L VES        |
| IV.14  | 22  | 117%           | 54         | 36         | 33      | positive       | T↓ II, III, VF                         | 47 L VES          |

## Arrhythmogenic Cardiomyopathy



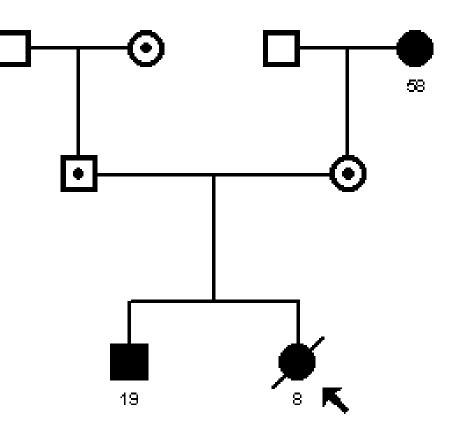
### "Dilated Cardiomyopathy"

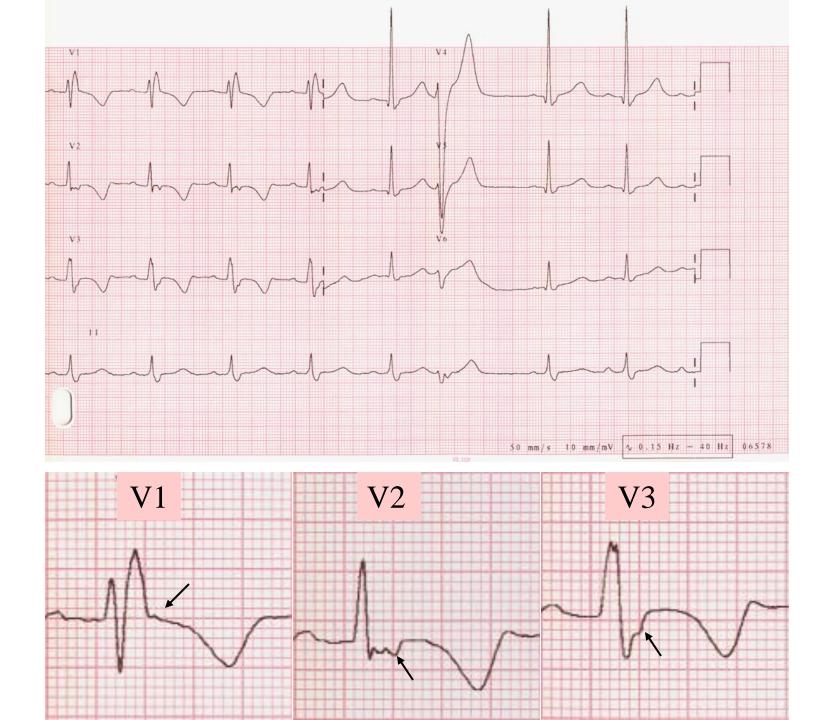
(unexplained LV dilatation / impaired contraction)

### <u>Clinical Presentation</u> <u>Ge</u>

### <u>Genes</u>

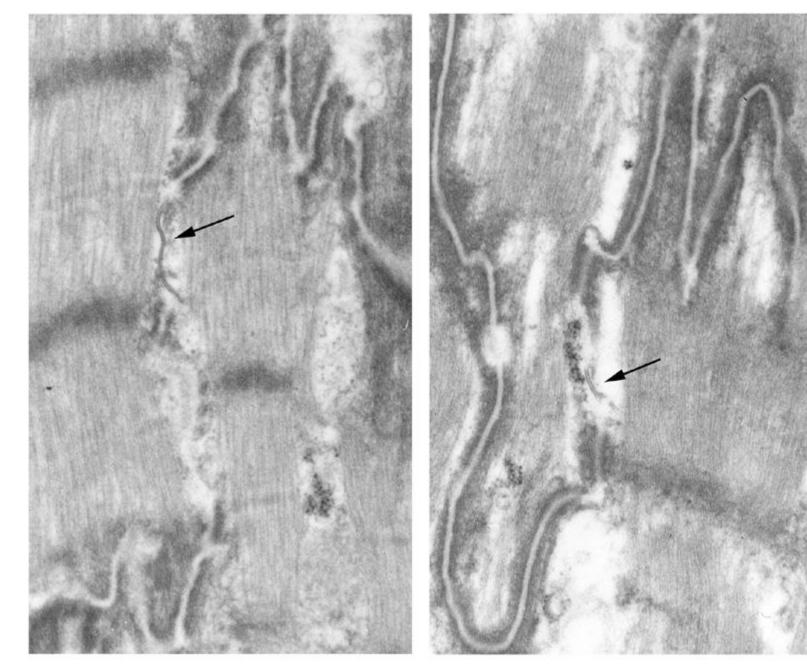
- Heart Failure  $\rightarrow$  cytoskeletal, sarcomere, Z disc
- Arrhythmia → desmosomal, lamin, SCN5A (CD, VT/VF, SD)


### Arrhythmogenic Cardiomyopathy


| genotype   |   | phenotype                                                                                                              |
|------------|---|------------------------------------------------------------------------------------------------------------------------|
| Desmosomal | - | ARVC / ALVC, hair/skin abnormalities                                                                                   |
| Lamin      | - | conduction disease, ventricular arrhythmia /sudden death,<br>dilated cardiomyopathy, lipodystrophy, muscular dystrophy |
| SCN5A      | - | Brugada Syndrome, conduction disease, AF, ventricular tachycardia / ventricular fibrillation, DCM                      |
| PLN        | - | low voltage ECG, VT/VF, DCM/ACM                                                                                        |
| TMEM43     | - | sudden death M>F                                                                                                       |
| FLNC       | - | sudden death, DCM, ACM                                                                                                 |
| RBM20      | - | DCM, AF, ?ventricular arrhythmia/sudden death as an early feature                                                      |
| Desmin     | - | skeletal myopathy, DCM, arrhythmia (?early vs late manifestation)                                                      |

### Naxos Disease (SD 2.3% / yr)

Age 5 asymp N ECG, N 2D echo frequent VES


- Age 7 Abn ECG N 2D echo 14,451 VES 21 couplets
- Age 8 Died leukaemia PM: normal RV, LV





### Control

### Naxos LV



Mechanisms of electrocardiographic abnormalities and arrhythmia in desmosomal disease

- late macroreentry as a consequence of fibro/fatty myocyte replacement
- early abnormal electrical coupling as a consequence of altered mechanical coupling

### Exercise and Disease Development

Cardiac Arrhythmogenic Remodeling in a Rat Model of Long-Term Intensive Exercise Training

Benito et al, Circulation 2011;123:13-22

Exercise Increases Age-Related Penetrance and Arrhythmic Risk in Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy– Associated Desmosomal Mutation Carriers

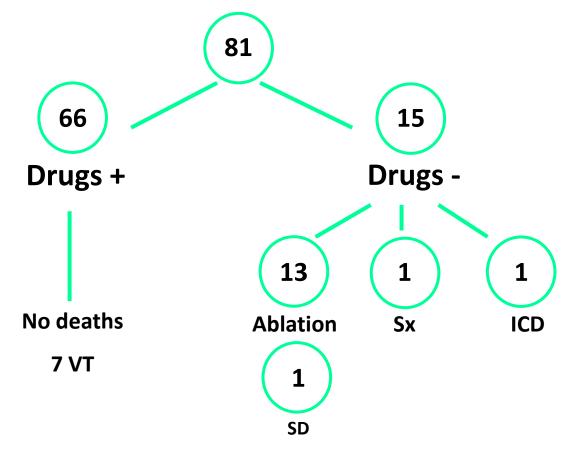
James et al, JACC 2013;62(14):1290-7

### Exercise in Arrhythmogenic Cardiomyopathy

- Data support endurance exercise as a contributor to disease development
- Data support exercise as a risk factor for life threatening ventricular arrhythmia

### ARVD – Marcus, Circulation 1982

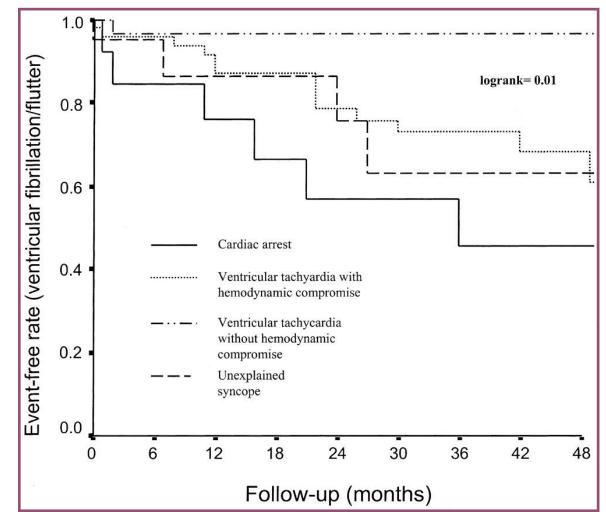
24 patients 22 LBBB VT 2 CHF


Treatment

10 drugs (BB, Class I, amio) 12 surgery (epicardial mapping)

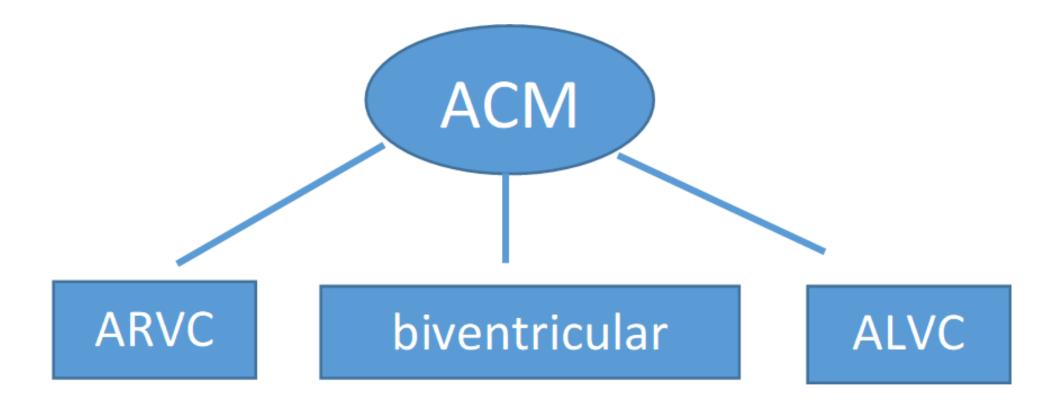
F/U 1 – 7, mean 3 yrs

20 alive 2 died perioperatively 1 CHF 3 yrs 1 non cardiac


# EP guided antiarrhythmic drug treatment in ARVC



Wichter et al, Circulation 1992


# ICD benefit in patients with ARVC

- 132 patients with ICDs
- Mean age 40±15
- 39 months F/U



### Issues for Resolution

- Should diagnostic criteria be modified to incorporate occult and/or later stages of disease?
- Is the distinction of heart failure versus arrhythmogenic DCM valid and/or useful?
- Do mechanisms of arrhythmia and should the approach to risk assessment differ in occult versus overt disease?
- Does an aggressive approach to EPS and ICD use contribute to disease progression in ACM?
- Is an ICD pro-arrhythmic in ACM?
- Should asymptomatic mutation carriers be recommended to restrict endurance exercise?

