

# Patent foramen ovale and the risk of cerebral infarcts in patients with acute pulmonary embolism: *a prospective observational study*

<sup>1</sup>Martin Hutyra, Assoc. Prof., MD., PhD, FESC, <sup>1</sup>David Vindiš, MD, <sup>2</sup>Daniel Šaňák, Assoc. Prof., MD, PhD, FESO, <sup>2</sup>Michal Král, MD, PhD, FESO, <sup>3</sup>Eva Čecháková, MD, PhD, <sup>4</sup>Simona Littnerová, MSc., <sup>5</sup>Tomáš Adam, Prof., MD, PhD, <sup>1</sup>Jan Přeček, MD, <sup>1</sup>Štěpán Hudec, MD, <sup>1</sup>Markéta Ječmenová, MD, <sup>1</sup>Miloš Táborský, Prof., MD., PhD, FESC, FACC

<sup>1</sup>Department of Internal Medicine I - Cardiology, University Hospital and Faculty of Medicine and Dentistry, Palacký University, Olomouc

<sup>2</sup>Comprehensive Stroke Center, Department of Neurology, University Hospital and Faculty of Medicine and Dentistry, Palacký University, Olomouc

<sup>3</sup>Department of Radiology, University Hospital and Faculty of Medicine and Dentistry, Palacký University, Olomouc

<sup>4</sup>Institute of Biostatistics and Analyses at the Faculty of Medicine and the Faculty of Science, Masaryk University, Brno

<sup>5</sup>Department of Clinical Biochemistry, University Hospital and Faculty of Medicine and Dentistry, Palacký University, Olomouc







# **Background and aims**

- A patent foramen ovale (PFO) is a known risk factor for paradoxical embolism, including ischemic stroke (IS). (1, 2) The closure of a PFO has been discussed controversially. The results of recent meta-analyses showed a trend to a favorable effect of the closure as a secondary prevention of IS. (3, 4, 5)
- Paradoxical embolism has been observed in patients with acute pulmonary embolism (PE) with coexisting PFO, and PFO was reported to be a significant predictor of poor outcome in this group. (6)
- Clinically silent ischemic brain lesions were detected in patients with PE and PFO, especially in patients with significant right ventricular dysfunction leading to right-left interatrial shunt via PFO in the acute phase of PE. (7) Magnetic resonance imaging (MRI) enables the reliable detection of ischemic brain lesions (IBL); moreover, the use of diffusion-weighted MRI allows the sensitive detection of acute cerebral ischemia.

The **aims** of our prospective study were **1**) **to assess** *the rates of new clinically silent brain ischemic embolism* detected on MRI and *clinical IS events* in patients with present acute PE during a 12-month follow-up period on effective anticoagulation therapy and **2**) **to evaluate** a potential *relationship with the presence of PFO and right-left shunt (RLS)* on transesophageal echocardiography (TEE).

Di Tullio MR. J Am Coll Cardiol. 2007;49(7):797-802.
Handke M. N Engl J Med. 2007;357(22):2262-8.
Meier B. Engl J Med. 2013;368(12):1083-91.
Carroll JD. Engl J Med. 2013;368(12):1092-100.
Stortecky S. Eur Heart J 2015;36:120-128.
Konstantinides S. Circulation. 1998;97(19):1946-51.







#### Patent foramen ovale



- A. Transesophageal echocardiography in the midesophageal view revealing a small, simple patent foramen ovale. Color Doppler shows a small jet shunting from left atrium (LA) to right atrium (RA), confirming patent foramen ovale.
- B. Medium sized (7 microbubbles) patent foramen ovale with right-to-left shunting demonstrated using echocontrast agent.
- C. Large patent foramen ovale with right-to-left shunting demonstrated using echocontrast agent.
- D. 3-dimensional transesophageal echocardiography revealing a large transient thromus in patent foramen ovale.









#### Brain magnetic resonance imaging – stroke protocol



- A. fluid attenuated inversion recovery (FLAIR) sequence
- B. diffusion-weighted imaging (DWI) sequence with ischemic brain lesions finding consistent with embolic lesions.







# Flow chart detailing patient enrollment in the study









## **Baseline patient group characteristics**

|                                                             | *Baseline total (n=78)           | *1PFO present (n=31)             | *1PFO absent (n=47)             | P      |
|-------------------------------------------------------------|----------------------------------|----------------------------------|---------------------------------|--------|
| BASELINE CHARACTERISTI                                      | С                                |                                  |                                 |        |
| Men, n (%)                                                  | 39 (50.0%)                       | 16 (51%)                         | 23 (48%)                        | 0.731  |
| Age (years)                                                 | 62.7/66.0 (33.0; 81.0)           | 64.5/70.5 (54.8; 75.0)           | 61.4/64.0 (48.0; 74.1)          | 0.390  |
| Height (cm)                                                 | 169.7 / 168.0 (158.0; 184.0)     | 169.1/167.5 (164.0; 176.0)       | 169.4/169.0 (164.0; 175.8)      | 0.872  |
| Weight (kg)                                                 | 84.7/84.0 (55.0; 110.0)          | 86.6/84.5 (74.7; 95.3)           | 85.16/86.0 (78.0; 91.8)         | 0.699  |
| Body-mass index (BMI)                                       | 29.3/29.4 (19.7; 37.1)           | 30.1/29.6 (25.4; 35.7)           | 28.3 /29.1 (27.5; 32.3)         | 0.674  |
| COMORBIDITIES IN MEDICA                                     | AL HISTORY                       |                                  |                                 |        |
| Arterial hypertension, n (%)                                | 48 (61.5%)                       | 20 (64.5%)                       | 28 (59.6%)                      | 0.661  |
| Atrial fibrillation, n (%)                                  | 9 (11.5%)                        | 3 (9.7%)                         | 6 (12.7%)                       | 0.676  |
| Peripheral arterial disease, n (%)                          | 3 (3.8%)                         | 1 (3.2%)                         | 2 (4.2%)                        | 0.817  |
| Stroke/TIA2, n (%)                                          | 6 (7.7%)                         | 4 (12.9%)                        | 2 (4.3%)                        | 0.161  |
| Coronary heart disease, n (%)                               | 11 (14.1%)                       | 5 (16.1%)                        | 6 (12.8%)                       | 0.676  |
| Diabetes mellitus type 2, n (%)                             | 13 (19.2%)                       | 6 (19.4%)                        | 7 (14.9%)                       | 0.721  |
| Thromboembolic disease, n (%)                               | 7 (9.0%)                         | 4 (12.9%)                        | 3 (6.4%)                        | 0.072  |
| Malignancy, n (%)                                           | 11 (14.1%)                       | 6 (19.4%)                        | 5 (10.6%)                       | 0.279  |
| Advanced lung disease3, n (%)                               | 4 (5.1%)                         | 1 (3.2%)                         | 3 (6.4%)                        | 0.536  |
| Chronic renal insufficiency, n (%)                          | 2 (2.6%)                         | 1 (3.2%)                         | 1 (2.1%)                        | 0.157  |
| PULMONARY EMBOLISM TH                                       | REATMENT                         |                                  |                                 |        |
| <sup>4</sup> UFH/LMWH only, n (%)                           | 7 (8.9%)                         | 2 (6.4%)                         | 5 (10.6%)                       | 0.315  |
| <sup>4</sup> LMWH/warfarin, n (%)                           | 68 (87.2%)                       | 27 (87.1%)                       | 41 (87.2%)                      | 1.000  |
| <sup>4</sup> LMWH/edoxaban or warfarin, n (%)               | 3 (3.8%)                         | 2 (3.2%)                         | 1 (4.2%)                        | 0.901  |
| Thrombolysis (5rt-PA), n (%)                                | 9 (11.5%)                        | 3 (9.7%)                         | 6 (12.7%)                       | 0.651  |
| BASELINE ECHOCARDIOGR                                       | APHY                             |                                  |                                 |        |
| Tricuspid valve regurgitation, n (%)                        | 70 (89.7%)                       | 30 (96.7%)                       | 40 (85.1%)                      | 0.489  |
| Tricuspid valve regurgitation peak pressure gradient (mmHg) | 36.3/30.0 (30.0; 48.1)           | 36.1/30.0 (25.3; 47.0)           | 35.9/29.0 (20.9; 50.0)          | 0.964  |
| 6Right ventricle diameter (mm)                              | 41.3/41.0 (36.0; 46.6)           | 42.0/41.0 (36.7; 48.0)           | 40.4/41.0 (34.7; 46.0)          | 0.304  |
| Atrial septal aneurysm, n (%)                               | 18 (23.1%)                       | 14 (45.1%)                       | 4 (8.5%)                        | 0.0002 |
| 7TA peak systolic velocity (cm/s)                           | 15.4/15.0 (12.0; 18.0)           | 15.3/15.5 (13.0; 17.0)           | 15.4/15.0 (12.0; 18.0)          | 0.865  |
| <sup>8</sup> TAPSE (mm)                                     | 24.1/24.0 (21.0; 28.0)           | 24.4/24.0 (21.0; 28.0)           | 23.8/23.0 (21.4; 28.6)          | 0.626  |
| CARDIAC MARKERS                                             |                                  |                                  |                                 |        |
| 9NT-proBNP (ng/L)                                           | 2744.3/1276.0 (63.9;<br>10144.0) | 3086.2/1949.5 (288.4;<br>4453.1) | 2516.8/894.2 (166.6;<br>2783.3) | 0.649  |
| Troponin T (ng/L)                                           | 0.11/0.02 (0.00; 0.33)           | 0.08/0.06 (0.00; 0.33)           | 0.07/0.01 (0.00; 0.04)          | 0.751  |
| CLINICAL ENDPOINTS                                          | •                                |                                  |                                 |        |
| Mortality follow-up, n (%)                                  | 4 (5.1%)                         | 3 (9.7%)                         | 1 (2.3%)                        | 0.097  |
| Stroke clinically apparent, n (%)                           | 7 (9.0%)                         | 4 (12.9%)                        | 3 (6.4%)                        | 0.324  |
| <sup>2</sup> TIA clinically apparent, n (%)                 | 4 (5.1%)                         | 2 (6.4%)                         | 2 (4.2%)                        | 0.715  |
| <sup>10</sup> Pulmonary hypertension, n (%)                 | 12 (15.4%)                       | 3 (9.7%)                         | 9(19.1%)                        | 0.506  |

PFO was detected in 31 patients (39.7%)

At baseline MRI, IBL was present in 39 (50%) pts.

\*Number and percentage of total for categorical parameters; mean/median (5-95<sup>th</sup> percentile range) for continuous parameters

- <sup>1</sup> PFO patent foramen ovale
- <sup>2</sup> TIA transient ischemic attack
- $^3$  chronic obstructive pulmonary disease (n = 3, FEV1 <60%), interstitial lung disease (n=1, TLC <70%)
- <sup>4</sup> UFH/LMWH unfractionated heparin/low molecular weight heparin
- <sup>5</sup> rt-PA recombinant tissue Plasminogen activator (Alteplase)
- <sup>6</sup> Apical four chamber view endiastolic right ventricle basal diameter <sup>7</sup> TA - tricuspid anulus
- <sup>8</sup> TAPSE tricuspid annular plane systolic excursion
- <sup>9</sup> NT-proBNP amino-terminal fragment of brain natriuretic peptide
- <sup>10</sup> high and intermediate echocardiographic probability after a 12-month follow up







#### Relationship between presence of PFO/RLS and detection of ischemic brain lesions on MRI

|                                                                                          |                                      | Patent foramen ovale*   |         |                          | <b>Right to left shunt</b> * |          |                        |                    |
|------------------------------------------------------------------------------------------|--------------------------------------|-------------------------|---------|--------------------------|------------------------------|----------|------------------------|--------------------|
|                                                                                          |                                      | absent                  | present | $P^{\dagger}$            | absent                       | present  | $P^{\dagger}$          |                    |
| Baseline <sup>3</sup> MRI isch<br>brain lesions                                          | emic                                 |                         |         |                          |                              |          |                        |                    |
|                                                                                          |                                      | n=28                    | n=11    | 0.063                    | n=29                         | n=10     |                        |                    |
| (X)                                                                                      | absent                               | (59.6%)                 | (35.5%) |                          | (58.0%)                      | (35.7%)  | 0.098                  |                    |
|                                                                                          | present                              | n=19                    | n=20    |                          | n=21                         | n=18     |                        |                    |
|                                                                                          |                                      | (40.4%)                 | (64.5%) |                          | (42.0%)                      | (64.3%)  |                        |                    |
| New ‡MRI ischem<br>lesions at follow-up                                                  | ic brain<br>)                        |                         |         |                          |                              |          |                        | assimuted Av       |
|                                                                                          |                                      | n=35                    | n=14    |                          | n=38                         | n=11     |                        |                    |
|                                                                                          | absent                               | (94.6%)                 | (66.7%) | 0.008                    | (95.0%)                      | (61.1%)  | 0.002                  | A GROOM            |
|                                                                                          |                                      | n=2                     | n=7     |                          | n=2                          | n=7      |                        | Murphy apartal and |
|                                                                                          | present                              | (5.4%)                  | (33.3%) |                          | (5.0%)                       | (38.9%)  |                        |                    |
| * Categories of parameters as<br>† Statistical comparisons was<br>categorical parameters | s n and % of tota<br>made with Fisch | al<br>er exact test for | Kom     | iplexní<br>liovaskulární | TPr ?                        | Lékařská | fakulta<br>v Palackého |                    |

# MRI – magnetic resonance imaging



araiovaskularn



KARDIOLOGICKÁ

# Composite endpoint of new IBL on MRI and clinically presented IS events without MRI finding

|                                        | * Total    | <sup>†</sup> PFO present | <sup>†</sup> PFO absent | Р      |
|----------------------------------------|------------|--------------------------|-------------------------|--------|
|                                        | (n=58)     | (n=21)                   | (n=37)                  |        |
| New ‡MRI ischemic brain lesions (n)    | 9 (15.5%)  | 7 (33.3%)                | 2 (5.4%)                | 0.008  |
| Stroke/§ TIA with no ‡ MRI finding (n) | 4 (6.9%)   | 2 (9.5%)                 | 2 (5.4%)                | 0.615  |
| COMPOSITE ENDPOINT                     | 13 (22.4%) | 9 (42.8%)                | 4 (10.8%)               | 0.0082 |





\* Categories of parameters as number and percentage of total

<sup>+</sup> PFO – patent foramen ovale, <sup>‡</sup> MRI – magnetic resonance imaging, § TIA – transient ischemic attack

| luency<br>ht 2 given PFO)            | 1 -<br>0,9 -<br>0,8 -<br>0,7 -<br>0,6 -              | 0,108  | 0,429               | Composite endpoint 2<br>1<br>0 |
|--------------------------------------|------------------------------------------------------|--------|---------------------|--------------------------------|
| Relative Freq<br>P(Composite endpoin | - 0,5 -<br>0,4 -<br>0,3 -<br>· 0,2 -<br>· 0,1 -<br>0 | 0,892  | 0,571               |                                |
|                                      |                                                      | 0 Pate | ent foramen ovale 1 |                                |







# Predictive value of PFO and right-to-left shunt for ischemic brain lesion presence on MRI

|                                     |                  | OR (95% CI)*        | Р     | Sensitivity | Specificity |  |  |
|-------------------------------------|------------------|---------------------|-------|-------------|-------------|--|--|
| Baseline <sup>3</sup> MRI ischemic  |                  |                     |       |             |             |  |  |
| brain lesions                       |                  |                     |       |             |             |  |  |
| SI                                  | *PFO             | 1.536(1.048;6.849)  | 0.024 | 0.645       | 0.596       |  |  |
|                                     | <sup>‡</sup> RLS | 1.415(0.956;6.463)  | 0.033 | 0.643       | 0.580       |  |  |
| New <sup>3</sup> MRI ischemic brain |                  |                     |       |             |             |  |  |
| lesions at follow-up                |                  |                     |       |             |             |  |  |
|                                     | *PFO             | 4.575(1.616;47.386) | 0.008 | 0.333       | 0.946       |  |  |
|                                     | <sup>‡</sup> RLS | 6.190(2.190;66.767) | 0.002 | 0.389       | 0.950       |  |  |





\* Odds ratio (OR) for models based on logistic regression, \* PFO – patent foramen ovale, ‡ RLS – right to left shunt







#### Prediction of clinically presented IS events using baseline NR-proBNP during follow-up period in ROC analysis



\* NT-proBNP - N-terminal fragment of brain natriuretic peptide, <sup>†</sup>AUC – area under curve, <sup>‡</sup>CI – confidence interval \*optimal NT-proBNP cut-off value 2473 ng/L (sensitivity 83%, specificity 80%, odds ratio 20.0, AUC 0.83 [0.32 to 1.0]; *P*=0.008)







#### Conclusions

- 1. The presence of PFO and RLS is associated with a higher risk of new brain ischemic lesions on MRI in patients with PE during a 12-month follow-up period despite effective anticoagulation therapy.
- Paradoxical embolism may be an important cause of ischemic cerebral events, which has to be ruled out in patients with no other evident stroke etiology. The detection of PFO and RLS can identify patients with PE who might profit from the closure of PFO.
- 3. For diagnostic purposes, we recommend the use of contrast-enhanced TEE. Thus, TEE should be a standard part of the diagnostic management of patients with acute PE.









## Acknowledgement...





























