Effect of Institutional Experience on Outcomes of Alcohol Septal Ablation

Josef Veselka, MD, PhD,^a Lothar Faber, MD, PhD,^b Morten Kvistholm Jensen, MD,^c Robert Cooper, MBChB, MRCP,^d Jaroslav Januska, MD,^e Jan Krejci, MD, PhD,^f Thomas Bartel, MD,^{g,h} Maciej Dabrowski, MD, PhD,ⁱ Peter Riis Hansen, MD, DMSc, PhD,^j Vibeke Marie Almaas, MD, PhD,^k Hubert Seggewiss, MD,^{b,1} Dieter Horstkotte, MD,^b Radka Adlova, MD,^a Henning Bundgaard, MD, DMSc,^c Jurriën ten Berg, MD, PhD,^m and Max Liebregts, MD^m

^aDepartment of Cardiology, University Hospital Motol and 2nd Medical School, Charles University

ACC/AHA Guidelines 2011

performance of at least 40 procedures (272). As a consensus opinion, the writing committee recommends an operator volume of at least 20 procedures or that the operator work within the context of an HCM program with a cumulative procedural volume of at least 50 procedures. In addition, given the data available from experienced centers, operators and institutions should aim to achieve mortality rates of <1%and major complication rates of <3%, with documented success in both hemodynamic and symptom benefit for their patients. This is best achieved in the context of a systematic program dedicated to the multidisciplinary and longitudinal care of patients with HCM.

ACC/AHA Guidelines 2011 Myectomy - Results

Late Results. Relief of outflow obstruction by septal myectomy may also extend the longevity of patients with HCM (61). Although RCTs involving myectomy surgery have not been performed, in a nonrandomized study, myectomy resulted in excellent long-term survival similar to that in the general population. After septal myectomy, long-term actuarial survival was 99%, 98%, and 95% at 1, 5, and 10 years, respectively (when considering HCM-related mortality). This survival rate did not differ from that expected in a Septal Myectomy is Associated With Worse In-Hospital Outcomes than Alcohol Septal Ablation: Data From the Nationwide Inpatient Sample in the United States, 2003-2011

Kim. JAMA Cardiol 2016

Canadian Journal of Cardiology 34 (2018) 16-22

Clinical Research

Effect of Institutional Experience on Outcomes of Alcohol Septal Ablation for Hypertrophic Obstructive Cardiomyopathy

Josef Veselka, MD, PhD,^a Lothar Faber, MD, PhD,^b Morten Kvistholm Jensen, MD,^c Robert Cooper, MBChB, MRCP,^d Jaroslav Januska, MD,^e Jan Krejci, MD, PhD,^f Thomas Bartel, MD,^{g,h} Maciej Dabrowski, MD, PhD,ⁱ Peter Riis Hansen, MD, DMSc, PhD,^j Vibeke Marie Almaas, MD, PhD,^k Hubert Seggewiss, MD,^{b,1} Dieter Horstkotte, MD,^b Radka Adlova, MD,^a Henning Bundgaard, MD, DMSc,^c Jurriën ten Berg, MD, PhD,^m and Max Liebregts, MD^m

Patients

- A total of **1437 patients** were enrolled in the Euro-ASA registry. Since a post-ASA complete heart block with subsequent pacemaker implantation was studied, we excluded 127 (9%) patients with permanent pacemakers or cardioverter-defibrillators (ICDs) implanted prior to ASA.
- Thus, we identified **1310 patients** with intractably symptomatic obstructive HCM that underwent ASA between 1997 and 2017.

Methods

- We retrospectively evaluated 1310 patients with symptomatic obstructive HCM undergoing ASA who were divided into two groups.
- First-50 Group consisted of the first consecutive 50 patients treated at each center, and Over-50 Group consisted of patients treated thereafter (patients 51 and above).

Thirty-day non-hierarchical occurrence of MACE

	First-50 Group N=482	Over-50 Group N=828	P value
Cardiovascular death, n (%)	10 (2.1)	3 (0.4)	0.006
Electrical cardioversion for VT/VF or ICD discharge	11 (2.3)	10 (1.2)	0.171
Cardiac tamponade, n (%)	8 (1.7)	7 (0.9)	0.189
Permanent pacemaker, n (%)	73 (15.1)	76 (9.2)	0.002
Total (%)	102 (21.2)	96 (11.7)	<0.001

Long-term results

	First-50 Group N=482	Over-50 Group N=828	P value
Dyspnea, NYHA class			
Baseline	2.9±0.5	2.9±0.4	0.407
Last clinical check-up	1.8±0.7	1.6±0.7	0.002
NYHA class III/IV			
Baseline, n (%)	394 (82)	704 (85)	0.121
Last clinical check-up, n (%)	77 (16)	85 (10)	0.003
LV outflow gradient at rest, mmHg			
Baseline	73.9±41.8	66.8±34.5	0.027
Last clinical check-up	20.8±27.5	14.0±17.2	<0.001
> 30 mmHg, n (%)	75 (16)	85 (10)	0.007

Repeated interventions

	First-50 Group N=482	Over-50 Group N=828	P value
Repeated ASA, n (%)	52 (11)	56 (7)	0.012
Myectomy after ASA, n (%)	23 (5)	22 (3)	0.058
Any repeated intervention, n (%)	67 (14)	73 (9)	0.005

Kaplan-Meier curves describing survival free of cardiovascular adverse events attributable to ASA in the first-50 vs the over-50 group (p<0.01).

(adjustment for age, baseline pressure gradient, baseline septum thickness, and year of performed procedure)

Kaplan-Meier curves describing survival free of **cardiovascular death** in the first-50 vs the over-50 group **(p<0.01)**.

(adjustment for age, baseline pressure gradient, baseline septum thickness, and year of performed procedure)

Kaplan-Meier curves describing survival free of **repeated septal reduction therapy** in the first-50 vs the over-50 group (p=0.03).

(adjustment for age, baseline pressure gradient, baseline septum thickness, and year of performed procedure)

Conclusions

- A lower occurrence of periprocedural report cardiovascular adverse events;
- A very low (0.4%) 30-day cardine for death rate;
- Fewer ASA-attributable control of the whole post-ASA court
- More pronounce atflow gradient reduction;
- Less patier C A HA class III/IV at the last clinical check-
- A lower need for repeated septal reduction therapy.

US Consequences

 Table 1. US programs performing high volumes of alcohol septal

 ablations per guideline recommendations

Institution/program*	City, state
Westchester Medical Center	Valhalla, New York
Medical University South Carolina	Charleston, South Carolina
Scripps Clinic	La Jolla, California
Massachusetts General Hospital	Boston, Massachusetts
Stanford Medical Center	Stanford, California
Tufts Medical Center	Boston, Massachusetts
Minneapolis Heart Institute	Minneapolis, Minnesota
Mayo Clinic	Rochester, Minnesota
Cleveland Clinic	Cleveland, Ohio
Houston Methodist	Houston, Texas
Duke Medical Center	Durham, North Carolina
Baylor Medical Center	Plano, Texas
University of Colorado	Denver, Colorado
Beaumont Medical Center	Royal Oak, Michigan
University of Pennsylvania	Philadelphia, Pennsylvania
Piedmont Heart Institute	Atlanta, Georgia
University of Washington	Seattle, Washington
Baptist Health	Louisville, Kentucky

* US institutions that have performed > 50 alcohol septal ablations and maintain > 5 procedures per year, consistent with guidelines and competency statements. This is a partial listing, in estimated descending annual volume, based on discussions with alcohol septal ablation experts.