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120 years of electrocardiography

ECG – ubiquitous diagnostic tool in clinical medicine
• low cost, rapid, simple to obtain
• available at point-of-care

Inherent contradiction within electrocardiography
• Acquisition is standardized and highly reproducible
• Interpretation is highly variable - according to variable human

expertise



EKG - bohatý zdroj fyziologických informácií, 
ktoré reflektujú stav srdca i iných systémov

Attia Z et al. Eur Heart J. 2021;ehab649. doi:10.1093/eurheartj/ehab649

Předvádějící
Poznámky prezentace
Attia ZI, Harmon DM, Behr ER, Friedman PA. Application of artificial intelligence to the electrocardiogram [published online ahead of print, 2021 Sep 17]. Eur Heart J. 2021;ehab649. doi:10.1093/eurheartj/ehab649Microelectrodes in a single myocyte (top left) record an action potential (depicted middle panel). Ionic currents and their propagationare sensitive to cardiac and non-cardiac conditions and structural changes.When the aggregated action potentials are recorded at the body surface(top right), the insuring tracing is the electrocardiogram(bottom). ECG, electrocardiogram.Artificial intelligence (AI) has given the electrocardiogram (ECG) and clinicians reading them super-human diagnostic abilities. Trained without hard-coded rules by finding often subclinical patterns in huge datasets, AI transforms the ECG, a ubiquitous, non-invasive cardiac test that is integrated into practice workflows, into a screening tool and predictor of cardiac and non-cardiac diseases, often in asymptomatic individuals. This review describes the mathematical background behind supervised AI algorithms, and discusses selected AI ECG cardiac screening algorithms including those for the detection of left ventricular dysfunction, episodic atrial fibrillation from a tracing recorded during normal sinus rhythm, and other structural and valvular diseases. The ability to learn from big data sets, without the need to understand the biological mechanism, has created opportunities for detecting non-cardiac diseases as COVID-19 and introduced challenges with regards to data privacy. Like all medical tests, the AI ECG must be carefully vetted and validated in real-world clinical environments. Finally, with mobile form factors that allow acquisition of medical-grade ECGs from smartphones and wearables, the use of AI may enable massive scalability to democratize healthcare. 



Aims to eliminate the varability of  ECG 
interpretation are not new
• Computer based interpretation

• Applying predefined rules based on previous experience
derived from experimental and clinical observation

• Artificial intelligence
• Deep learning - neural networks
• CNNs – convolutional neural networks - „image 

recognition“  



ČÍM VIAC INFORMÁCII O ELEKTRICKOM POLI SRDCA 
MÁME, TÝM LEPŠIE MÔŽEME DIAGNOSTIKOVAŤ 

KARDIÁLNE OCHORENIA.

ALE: ODKIAĽ ČERPAŤ INFORMÁCIE?
EXTENZÍVNY VERSUS INTENZÍVNY PRÍSTUP



Computers for ECG interpretation
1.Mimicking human interpretation by applying

predefined rules (traditional computer interpretation) 
= i.e. computer searches for digital counterparts of 
visible ecg changes.

2.Artificial intelligence (AI) - extracting information
beyond the level of recognition by humans

3.Expanding the number of leads to increase precision.





• Patient P034 with implanted pacemaker. During spontaneous activity
the PVC focus could be localizaed in the basal lateral segment of
the left ventricle.

Noninvasive PVC localization

The PVC focus was localized from a
BSPM 12 ms after the PVC onset.






SVET UMELEJ INTELIGENCIE

de Marvao A. et al. Heart 2020;106:399–400.



Machine learning (AI) by an artificial neural network

Miller DD Cardiology in Review 2020;28: 53–64

Předvádějící
Poznámky prezentace
Representation of machine learning by an artificial neural network (ANN) for complex high-dimensional genetic datadecomposition (upper), natural language processing of electronic medical records (EMR) text to create chronic disease outcometrajectory predictions (middle), and generative adversarial network (GAN) processing of clinical brain magnetic resonance imagesto create a virtual computed tomography (CT) scan (lower). Convolutional neural networks (CNNs) are frequently utilizedfor medical image AI analytics. CHF, congestive heart failure; DM, diabetes mellitus.



Artificial intelligence

• ML aims to characterise relationships among multiple variables or 
features within data sets that are not readily discernible to humans 
and diffcult to discover using traditional biostatistical methods

• ML can only yield associations and correlations; currently it cannot 
make definitive cause−effect inferences.

• The principal tasks of ML comprise: classification (e.g. distinguishing 
disease from non-disease); prediction (or regression) (e.g. estimating 
risk of future clinical events); and discovery (e.g. a new use for a drug 
or a new disease phenotype). 

Předvádějící
Poznámky prezentace
Scott IA. Demystifying machine learning: a primer for physicians. Intern Med J. 2021;51(9):1388-1400. doi:10.1111/imj.15200Abstract Machine learning is a tool for analysing digitised data sets and formulating predictions that can optimise clinical decision-making. It aims to identify complex patterns in large data sets and encode them into models that can then classify new unseen cases or make predictions on new data. Machine learning methods take several forms and individual models can be of many different types. More than 50 models have been approved for use in routine healthcare, and the numbers continue to grow exponentially. The reliability and robustness of any model depends on multiple factors, including the quality and quantity of the data used to develop the models, and the selection of features in the data considered most important to maximising accuracy. In ensuring models are safe, effective and reproducible in routine care, physicians need to have some understanding of how these models are developed and evaluated, and to collaborate with data and computer scientists in their design and validation. This narrative review introduces principles, methods and examples of machine learning in a way that does not require mastery of highly complex statistical and computational concepts. Keywords: deep learning; machine learning; prediction model. 



ECG = ideal target
for applying AI and deep learning

•Widely available digital data
•Easily stored and transfered
•Huge datasets available
•Powerful computing readily available



STROJOVÉ UČENIE (MACHINE LEARNING)

• Strojové učenie, jeden z druhov umelej inteligencie, funguje
na základe identifikácie vzorov v dostupných údajoch a 
následného uplatnenia týchto znalostí na nové údaje . Čím
väčší je súbor údajov, tým ľahšie je možné odhaliť aj
nepatrné súvislosti.

• Významné pokroky v týchto technológiách sa dosiahli
použitím veľkých súborov údajov (“big data”) a nevídanej
výpočtovej sily.



Umelá inteligencia v elektrokardiografii

Kwn J-M et al. Eur Heart J 2021: 42, 2896–2898 doi:10.1093/eurheartj/ehab090





Goto S, Goto S. Circ Rep. 2019 Nov 2;1(11):481-486. doi: 10.1253/circrep.CR-19-0096

Neural network is constructed by multiple units of statistical model 
called “neuron” that simulates the function of neuron cells

Předvádějící
Poznámky prezentace
Goto S, Goto S. Application of Neural Networks to 12-Lead Electrocardiography　- Current Status and Future Directions. Circ Rep. 2019 Nov 2;1(11):481-486. doi: 10.1253/circrep.CR-19-0096. PMID: 33693089; PMCID: PMC7897559.Schematic illustration of neuron units used in neural network models. The neuron unit simulates the function of a biological neuron by multiplying the input by weights and outputting the result through the activation layer



Umelá inteligencia v elektrokardiografii

Kwn J-M et al. Eur Heart J 2021: 42, 2896–2898 doi:10.1093/eurheartj/ehab090



ELEKTRICKÉ OCHORENIA SRDCA



ATRIAL FIBRILLATION

Předvádějící
Poznámky prezentace
Buttner R, Burns E https://litfl.com/atrial-fibrillation-ecg-library//



Siontis KC et al. Nat Rev Cardiol. 2021 Feb 1:1–14. doi: 10.1038/s41569-020-00503-2.



Siontis KC et al. Nat Rev Cardiol. 2021 Feb 1:1–14. doi: 10.1038/s41569-020-00503-2.

Předvádějící
Poznámky prezentace
Siontis KC, Noseworthy PA, Attia ZI, Friedman PA. Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nat Rev Cardiol. 2021 Feb 1:1–14. doi: 10.1038/s41569-020-00503-2. Epub ahead of print. PMID: 33526938; PMCID: PMC7848866.development of a convolutional neural network using the 12-leadECg and application to detect silent atrial fibrillation. a | The analogueelectrocardiogram (ECG) signal is converted to a digital recording, resultingin a list of numerical values corresponding to the amplitude of the signal.(The numerical values depicted are arbitrary and shown for illustrativepurposes only.) These numerical values are then convolved with the networkweights within each lead and across leads, feeding sequential layers ofconvolutions until the final model output is reached. b | With the use of atrained, deep- learning artificial intelligence- enhanced ECG (AI–EGG)model, a one- off, standard, 12- lead, sinus- rhythm ECG can become asurrogate for prolonged rhythm monitoring for the detection of silent atrialfibrillation. Part a adapted with permission from ref.7



Attia ZI et al. Lancet. 2019 Sep 7;394(10201):861-867. doi: 10.1016/S0140-6736(19)31721-0.

Předvádějící
Poznámky prezentace
Attia ZI, Noseworthy PA, Lopez-Jimenez F, Asirvatham SJ, Deshmukh AJ, Gersh BJ, Carter RE, Yao X, Rabinstein AA, Erickson BJ, Kapa S, Friedman PA. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet. 2019 Sep 7;394(10201):861-867. doi: 10.1016/S0140-6736(19)31721-0. Epub 2019 Aug 1. PMID: 31378392.ECG selection and windows of interest for patients with multiple ECGsThe figure shows an example of ECG selection for two patients with multiple ECGs over the same year. We used allnormal sinus rhythm ECGs for patients with no ECGs with atrial fibrillation recorded and the window of interestbegan on the date of their first ECG. For patients with at least one atrial fibrillation rhythm recorded, the first ECGrecording atrial fibrillation or atrial flutter was the index ECG and the window of interest began 31 days before theindex ECG. For all patients, the window of interest extended until study end. ECG=electrocardiograph



Attia ZI et al. Lancet. 2019 Sep 7;394(10201):861-867. doi: 10.1016/S0140-6736(19)31721-0.

Předvádějící
Poznámky prezentace
Attia ZI, Noseworthy PA, Lopez-Jimenez F, Asirvatham SJ, Deshmukh AJ, Gersh BJ, Carter RE, Yao X, Rabinstein AA, Erickson BJ, Kapa S, Friedman PA. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet. 2019 Sep 7;394(10201):861-867. doi: 10.1016/S0140-6736(19)31721-0. Epub 2019 Aug 1. PMID: 31378392.Abstract Background: Atrial fibrillation is frequently asymptomatic and thus underdetected but is associated with stroke, heart failure, and death. Existing screening methods require prolonged monitoring and are limited by cost and low yield. We aimed to develop a rapid, inexpensive, point-of-care means of identifying patients with atrial fibrillation using machine learning. Methods: We developed an artificial intelligence (AI)-enabled electrocardiograph (ECG) using a convolutional neural network to detect the electrocardiographic signature of atrial fibrillation present during normal sinus rhythm using standard 10-second, 12-lead ECGs. We included all patients aged 18 years or older with at least one digital, normal sinus rhythm, standard 10-second, 12-lead ECG acquired in the supine position at the Mayo Clinic ECG laboratory between Dec 31, 1993, and July 21, 2017, with rhythm labels validated by trained personnel under cardiologist supervision. We classified patients with at least one ECG with a rhythm of atrial fibrillation or atrial flutter as positive for atrial fibrillation. We allocated ECGs to the training, internal validation, and testing datasets in a 7:1:2 ratio. We calculated the area under the curve (AUC) of the receiver operatoring characteristic curve for the internal validation dataset to select a probability threshold, which we applied to the testing dataset. We evaluated model performance on the testing dataset by calculating the AUC and the accuracy, sensitivity, specificity, and F1 score with two-sided 95% CIs. Findings: We included 180 922 patients with 649 931 normal sinus rhythm ECGs for analysis: 454 789 ECGs recorded from 126 526 patients in the training dataset, 64 340 ECGs from 18 116 patients in the internal validation dataset, and 130 802 ECGs from 36 280 patients in the testing dataset. 3051 (8·4%) patients in the testing dataset had verified atrial fibrillation before the normal sinus rhythm ECG tested by the model. A single AI-enabled ECG identified atrial fibrillation with an AUC of 0·87 (95% CI 0·86-0·88), sensitivity of 79·0% (77·5-80·4), specificity of 79·5% (79·0-79·9), F1 score of 39·2% (38·1-40·3), and overall accuracy of 79·4% (79·0-79·9). Including all ECGs acquired during the first month of each patient's window of interest (ie, the study start date or 31 days before the first recorded atrial fibrillation ECG) increased the AUC to 0·90 (0·90-0·91), sensitivity to 82·3% (80·9-83·6), specificity to 83·4% (83·0-83·8), F1 score to 45·4% (44·2-46·5), and overall accuracy to 83·3% (83·0-83·7). Interpretation: An AI-enabled ECG acquired during normal sinus rhythm permits identification at point of care of individuals with atrial fibrillation



Attia ZI et al. Lancet. 2019 Sep 7;394(10201):861-867. doi: 10.1016/S0140-6736(19)31721-0.

Předvádějící
Poznámky prezentace
Attia ZI, Noseworthy PA, Lopez-Jimenez F, Asirvatham SJ, Deshmukh AJ, Gersh BJ, Carter RE, Yao X, Rabinstein AA, Erickson BJ, Kapa S, Friedman PA. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet. 2019 Sep 7;394(10201):861-867. doi: 10.1016/S0140-6736(19)31721-0. Epub 2019 Aug 1. PMID: 31378392.Abstract Background: Atrial fibrillation is frequently asymptomatic and thus underdetected but is associated with stroke, heart failure, and death. Existing screening methods require prolonged monitoring and are limited by cost and low yield. We aimed to develop a rapid, inexpensive, point-of-care means of identifying patients with atrial fibrillation using machine learning. Methods: We developed an artificial intelligence (AI)-enabled electrocardiograph (ECG) using a convolutional neural network to detect the electrocardiographic signature of atrial fibrillation present during normal sinus rhythm using standard 10-second, 12-lead ECGs. We included all patients aged 18 years or older with at least one digital, normal sinus rhythm, standard 10-second, 12-lead ECG acquired in the supine position at the Mayo Clinic ECG laboratory between Dec 31, 1993, and July 21, 2017, with rhythm labels validated by trained personnel under cardiologist supervision. We classified patients with at least one ECG with a rhythm of atrial fibrillation or atrial flutter as positive for atrial fibrillation. We allocated ECGs to the training, internal validation, and testing datasets in a 7:1:2 ratio. We calculated the area under the curve (AUC) of the receiver operatoring characteristic curve for the internal validation dataset to select a probability threshold, which we applied to the testing dataset. We evaluated model performance on the testing dataset by calculating the AUC and the accuracy, sensitivity, specificity, and F1 score with two-sided 95% CIs. Findings: We included 180 922 patients with 649 931 normal sinus rhythm ECGs for analysis: 454 789 ECGs recorded from 126 526 patients in the training dataset, 64 340 ECGs from 18 116 patients in the internal validation dataset, and 130 802 ECGs from 36 280 patients in the testing dataset. 3051 (8·4%) patients in the testing dataset had verified atrial fibrillation before the normal sinus rhythm ECG tested by the model. A single AI-enabled ECG identified atrial fibrillation with an AUC of 0·87 (95% CI 0·86-0·88), sensitivity of 79·0% (77·5-80·4), specificity of 79·5% (79·0-79·9), F1 score of 39·2% (38·1-40·3), and overall accuracy of 79·4% (79·0-79·9). Including all ECGs acquired during the first month of each patient's window of interest (ie, the study start date or 31 days before the first recorded atrial fibrillation ECG) increased the AUC to 0·90 (0·90-0·91), sensitivity to 82·3% (80·9-83·6), specificity to 83·4% (83·0-83·8), F1 score to 45·4% (44·2-46·5), and overall accuracy to 83·3% (83·0-83·7). Interpretation: An AI-enabled ECG acquired during normal sinus rhythm permits identification at point of care of individuals with atrial fibrillation



“Torsade de Points” Tachycardia in long QT syndrome

Gabel A et al., Am J Cardiol 1999



LONG QT SYNDROME

Předvádějící
Poznámky prezentace
Bos JM, Attia ZI, Albert DE, Noseworthy PA, Friedman PA, Ackerman MJ. Use of Artificial Intelligence and Deep Neural Networks in Evaluation of Patients With Electrocardiographically Concealed Long QT Syndrome From the Surface 12-Lead Electrocardiogram. JAMA Cardiol. 2021 May 1;6(5):532-538. doi: 10.1001/jamacardio.2020.7422. PMID: 33566059; PMCID: PMC7876623.



Předvádějící
Poznámky prezentace
Prifti E, Fall A, Davogustto G, et al. Deep learning analysis of electrocardiogram for risk prediction of drug-induced arrhythmias and diagnosis of long QT syndrome. Eur Heart J. 2021;42(38):3948-3961. doi:10.1093/eurheartj/ehab588Convolutional neural network models applied to ECGs outperformQTc measurements to identify exposure to drugs blocking IKr, congenital longQT syndrome,�and are greatest shortly after a drug-induced Torsade-de-Pointes episode.�Abstract Aims: Congenital long-QT syndromes (cLQTS) or drug-induced long-QT syndromes (diLQTS) can cause torsade de pointes (TdP), a life-threatening ventricular arrhythmia. The current strategy for the identification of drugs at the high risk of TdP relies on measuring the QT interval corrected for heart rate (QTc) on the electrocardiogram (ECG). However, QTc has a low positive predictive value. Methods and results: We used convolutional neural network (CNN) models to quantify ECG alterations induced by sotalol, an IKr blocker associated with TdP, aiming to provide new tools (CNN models) to enhance the prediction of drug-induced TdP (diTdP) and diagnosis of cLQTS. Tested CNN models used single or multiple 10-s recordings/patient using 8 leads or single leads in various cohorts: 1029 healthy subjects before and after sotalol intake (n = 14 135 ECGs); 487 cLQTS patients (n = 1083 ECGs: 560 type 1, 456 type 2, 67 type 3); and 48 patients with diTdP (n = 1105 ECGs, with 147 obtained within 48 h of a diTdP episode). CNN models outperformed models using QTc to identify exposure to sotalol [area under the receiver operating characteristic curve (ROC-AUC) = 0.98 vs. 0.72, P ≤ 0.001]. CNN models had higher ROC-AUC using multiple vs. single 10-s ECG (P ≤ 0.001). Performances were comparable for 8-lead vs. single-lead models. CNN models predicting sotalol exposure also accurately detected the presence and type of cLQTS vs. healthy controls, particularly for cLQT2 (AUC-ROC = 0.9) and were greatest shortly after a diTdP event and declining over time (P ≤ 0.001), after controlling for QTc and intake of culprit drugs. ECG segment analysis identified the J-Tpeak interval as the best discriminator of sotalol intake. Conclusion: CNN models applied to ECGs outperform QTc measurements to identify exposure to drugs altering the QT interval, congenital LQTS, and are greatest shortly after a diTdP episode. Keywords: Interpretability; Long QT; Machine learning; Risk prediction; Torsades de pointes. 



Profil významnosti 
jednotlivých 

charakteristík pre 
identifikáciu ekg stopy 

sotalolu  (feature 
importance profile)

Prifti E et al. Eur Heart J. 2021;42(38):3948-3961. doi:10.1093/eurheartj/ehab588

CNN sa “naučila” rozoznávať ekg zmeny (často subtílne, 
presahujúce schopnosť ľudského posúdenia) indukované

sotalolom ako modelom blokády kanála Ikr. To je rozhodujúci
mechanizmus predĺženia intervalu QT, čo predisponuje ku vzniku

TdP. 

Předvádějící
Poznámky prezentace
Prifti E, Fall A, Davogustto G, et al. Deep learning analysis of electrocardiogram for risk prediction of drug-induced arrhythmias and diagnosis of long QT syndrome. Eur Heart J. 2021;42(38):3948-3961. doi:10.1093/eurheartj/ehab588Interpretability of the sotalol footprint on the electrocardiogramsignal. This figure displays an averaged signal of the standardized electrocardiogramforeach segmented beat for leads LII, V2, and V3. All signals fromthe same time points were analysed together. Similarly, the standardizedfeature importance profile is summarized and laid behind the electrocardiogram profile. Colours for both the electrocardiogram and FIP indicate intensityof the feature importance profile.Abstract Aims: Congenital long-QT syndromes (cLQTS) or drug-induced long-QT syndromes (diLQTS) can cause torsade de pointes (TdP), a life-threatening ventricular arrhythmia. The current strategy for the identification of drugs at the high risk of TdP relies on measuring the QT interval corrected for heart rate (QTc) on the electrocardiogram (ECG). However, QTc has a low positive predictive value. Methods and results: We used convolutional neural network (CNN) models to quantify ECG alterations induced by sotalol, an IKr blocker associated with TdP, aiming to provide new tools (CNN models) to enhance the prediction of drug-induced TdP (diTdP) and diagnosis of cLQTS. Tested CNN models used single or multiple 10-s recordings/patient using 8 leads or single leads in various cohorts: 1029 healthy subjects before and after sotalol intake (n = 14 135 ECGs); 487 cLQTS patients (n = 1083 ECGs: 560 type 1, 456 type 2, 67 type 3); and 48 patients with diTdP (n = 1105 ECGs, with 147 obtained within 48 h of a diTdP episode). CNN models outperformed models using QTc to identify exposure to sotalol [area under the receiver operating characteristic curve (ROC-AUC) = 0.98 vs. 0.72, P ≤ 0.001]. CNN models had higher ROC-AUC using multiple vs. single 10-s ECG (P ≤ 0.001). Performances were comparable for 8-lead vs. single-lead models. CNN models predicting sotalol exposure also accurately detected the presence and type of cLQTS vs. healthy controls, particularly for cLQT2 (AUC-ROC = 0.9) and were greatest shortly after a diTdP event and declining over time (P ≤ 0.001), after controlling for QTc and intake of culprit drugs. ECG segment analysis identified the J-Tpeak interval as the best discriminator of sotalol intake. Conclusion: CNN models applied to ECGs outperform QTc measurements to identify exposure to drugs altering the QT interval, congenital LQTS, and are greatest shortly after a diTdP episode. Keywords: Interpretability; Long QT; Machine learning; Risk prediction; Torsades de pointes. 



Mapa senzitivity pre určenie ekg segmentu rozhodujúceho 
pre dg. aortálnej stenózy

Kwon JM et al. J Am Heart Assoc. 2020;9(7):e014717. doi:10.1161/JAHA.119.014717



• the AI-ECG was found to distinguish patients with electrocardiographically 
concealed LQTS

• provide a nearly 80% accurate pregenetic test 
anticipation of LQTS genotype status.

• For a cut-off of QTc > 500ms, a strong diagnostic and risk marker for the 
likelihood of LQTS, the area under the curve (AUC) was 0.97, with 
sensitivity and specificity of 80.0%, and 94.4%, respectively, indicating 
strong utility as a screening method.

Bos JM et al. JAMA Cardiol. 2021 May 1;6(5):532-538. doi: 10.1001/jamacardio.2020.7422

Předvádějící
Poznámky prezentace
Bos JM, Attia ZI, Albert DE, Noseworthy PA, Friedman PA, Ackerman MJ. Use of Artificial Intelligence and Deep Neural Networks in Evaluation of Patients With Electrocardiographically Concealed Long QT Syndrome From the Surface 12-Lead Electrocardiogram. JAMA Cardiol. 2021 May 1;6(5):532-538. doi: 10.1001/jamacardio.2020.7422. PMID: 33566059; PMCID: PMC7876623.



DYSFUNKCIA ĽAVEJ KOMORY



N Engl J Med. 1982 Jan 7;306(1):4-9. doi: 10.1056/NEJM198201073060102

COHORT OF 84 PATIENTS

Předvádějící
Poznámky prezentace
Palmeri ST, Harrison DG, Cobb FR, Morris KG, Harrell FE, Ideker RE, Selvester RH, Wagner GS. A QRS scoring system for assessing left ventricular function after myocardial infarction. N Engl J Med. 1982 Jan 7;306(1):4-9. doi: 10.1056/NEJM198201073060102. PMID: 7053469.





Konvolučná neuronálna sieť (CNN) s “učením pod dohľadom” 
(supervised learning)

Attia Z et al. Eur Heart J. 2021;ehab649. doi:10.1093/eurheartj/ehab649

Předvádějící
Poznámky prezentace
Attia ZI, Harmon DM, Behr ER, Friedman PA. Application of artificial intelligence to the electrocardiogram [published online ahead of print, 2021 Sep 17]. Eur Heart J. 2021;ehab649. doi:10.1093/eurheartj/ehab649A convolutional neural network is trained by feeding in labelled data (in this case voltage time waveforms), and through repetition it identifiesthe patterns in the data that are associated with the data labels (in this example, heart pump strength, or ejection fraction). The network hastwo components, convolution layers that extract image components to create the artificial intelligence features, and the fully connected layers thatcomprise the model, that leads to the network output.While large data sets and robust computing are required to train networks, once trained, thecomputation requirements are substantially reduced, permitting smartphone application. AI, artificial intelligence; EF, ejection fraction.Artificial intelligence (AI) has given the electrocardiogram (ECG) and clinicians reading them super-human diagnostic abilities. Trained without hard-coded rules by finding often subclinical patterns in huge datasets, AI transforms the ECG, a ubiquitous, non-invasive cardiac test that is integrated into practice workflows, into a screening tool and predictor of cardiac and non-cardiac diseases, often in asymptomatic individuals. This review describes the mathematical background behind supervised AI algorithms, and discusses selected AI ECG cardiac screening algorithms including those for the detection of left ventricular dysfunction, episodic atrial fibrillation from a tracing recorded during normal sinus rhythm, and other structural and valvular diseases. The ability to learn from big data sets, without the need to understand the biological mechanism, has created opportunities for detecting non-cardiac diseases as COVID-19 and introduced challenges with regards to data privacy. Like all medical tests, the AI ECG must be carefully vetted and validated in real-world clinical environments. Finally, with mobile form factors that allow acquisition of medical-grade ECGs from smartphones and wearables, the use of AI may enable massive scalability to democratize healthcare. 



Attia ZI et al. Nat Med. 2019 Jan;25(1):70-74. doi: 10.1038/s41591-018-0240-2

Předvádějící
Poznámky prezentace
Attia ZI, Kapa S, Lopez-Jimenez F, McKie PM, Ladewig DJ, Satam G, Pellikka PA, Enriquez-Sarano M, Noseworthy PA, Munger TM, Asirvatham SJ, Scott CG, Carter RE, Friedman PA. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat Med. 2019 Jan;25(1):70-74. doi: 10.1038/s41591-018-0240-2. Epub 2019 Jan 7. PMID: 30617318.



Attia ZI et al. Nat Med. 2019 Jan;25(1):70-74. doi: 10.1038/s41591-018-0240-2



Long-term incidence of developing an EF 
of ≤35% in patients with an initially normal 

EF stratified by AI classification

HR for developing low LVEF with 
abnormal AI-ECG = 4.1 (CI 3.3-5.0)

Applying AI permits the ECG to 
serve as a powerful tool:
• to screen for heart failure with LV 

dysfunction 
• to identify individuals at 

increased risk for its development 
in the future.

Attia ZI et al. Nat Med. 2019 Jan;25(1):70-74. doi: 10.1038/s41591-018-0240-2



Předvádějící
Poznámky prezentace
Attia ZI, Harmon DM, Behr ER, Friedman PA. Application of artificial intelligence to the electrocardiogram [published online ahead of print, 2021 Sep 17]. Eur Heart J. 2021;ehab649. doi:10.1093/eurheartj/ehab649Artificial intelligence disease previvor. Left panel—an apparently normal electrocardiogram is identified by artificial intelligence as beingassociated with a low ejection fraction. A contemporaneous echocardiogram depicts normal ventricular function (ejection fraction 50%). Middlepanel—5 years later, at age 33, additional electrocardiograms changes are now visible to the human eye, and repeat echocardiography showsdepressed ventricular function (ejection fraction 31%). Right panel—risk of developing ejection fraction <35% with a positive artificial intelligenceelectrocardiogram (red line) vs. with a negative artificial intelligence electrocardiogram for low ejection fraction (blue line). Further details in the text.AI, artificial intelligence; ECG, electrocardiogram; EF, ejection fraction.Artificial intelligence (AI) has given the electrocardiogram (ECG) and clinicians reading them super-human diagnostic abilities. Trained without hard-coded rules by finding often subclinical patterns in huge datasets, AI transforms the ECG, a ubiquitous, non-invasive cardiac test that is integrated into practice workflows, into a screening tool and predictor of cardiac and non-cardiac diseases, often in asymptomatic individuals. This review describes the mathematical background behind supervised AI algorithms, and discusses selected AI ECG cardiac screening algorithms including those for the detection of left ventricular dysfunction, episodic atrial fibrillation from a tracing recorded during normal sinus rhythm, and other structural and valvular diseases. The ability to learn from big data sets, without the need to understand the biological mechanism, has created opportunities for detecting non-cardiac diseases as COVID-19 and introduced challenges with regards to data privacy. Like all medical tests, the AI ECG must be carefully vetted and validated in real-world clinical environments. Finally, with mobile form factors that allow acquisition of medical-grade ECGs from smartphones and wearables, the use of AI may enable massive scalability to democratize healthcare. 



ŠTRUKTURÁLNE OCHORENIA SRDCA



Maron BJ et al. NEJM 1987

Patologic
findings in HCMP  



Buttner R, Burns E https://litfl.com/hypertrophic-cardiomyopathy-hcm-ecg-library/

ECG in HCMP



Předvádějící
Poznámky prezentace
Ko WY, Siontis KC, Attia ZI, Carter RE, Kapa S, Ommen SR, Demuth SJ, Ackerman MJ, Gersh BJ, Arruda-Olson AM, Geske JB, Asirvatham SJ, Lopez-Jimenez F, Nishimura RA, Friedman PA, Noseworthy PA. Detection of Hypertrophic Cardiomyopathy Using a Convolutional Neural Network-Enabled Electrocardiogram. J Am Coll Cardiol. 2020 Feb 25;75(7):722-733. doi: 10.1016/j.jacc.2019.12.030. PMID: 32081280.Abstract Background: Hypertrophic cardiomyopathy (HCM) is an uncommon but important cause of sudden cardiac death. Objectives: This study sought to develop an artificial intelligence approach for the detection of HCM based on 12-lead electrocardiography (ECG). Methods: A convolutional neural network (CNN) was trained and validated using digital 12-lead ECG from 2,448 patients with a verified HCM diagnosis and 51,153 non-HCM age- and sex-matched control subjects. The ability of the CNN to detect HCM was then tested on a different dataset of 612 HCM and 12,788 control subjects. Results: In the combined datasets, mean age was 54.8 ± 15.9 years for the HCM group and 57.5 ± 15.5 years for the control group. After training and validation, the area under the curve (AUC) of the CNN in the validation dataset was 0.95 (95% confidence interval [CI]: 0.94 to 0.97) at the optimal probability threshold of 11% for having HCM. When applying this probability threshold to the testing dataset, the CNN's AUC was 0.96 (95% CI: 0.95 to 0.96) with sensitivity 87% and specificity 90%. In subgroup analyses, the AUC was 0.95 (95% CI: 0.94 to 0.97) among patients with left ventricular hypertrophy by ECG criteria and 0.95 (95% CI: 0.90 to 1.00) among patients with a normal ECG. The model performed particularly well in younger patients (sensitivity 95%, specificity 92%). In patients with HCM with and without sarcomeric mutations, the model-derived median probabilities for having HCM were 97% and 96%, respectively. Conclusions: ECG-based detection of HCM by an artificial intelligence algorithm can be achieved with high diagnostic performance, particularly in younger patients. This model requires further refinement and external validation, but it may hold promise for HCM screening. Keywords: artificial intelligence; diagnostic performance; electrocardiogram; hypertrophic cardiomyopathy. 



AORTIC STENOSIS



Předvádějící
Poznámky prezentace
Kwon JM, Lee SY, Jeon KH, et al. Deep Learning-Based Algorithm for Detecting Aortic Stenosis Using Electrocardiography. J Am Heart Assoc. 2020;9(7):e014717. doi:10.1161/JAHA.119.014717Background Severe, symptomatic aortic stenosis (AS) is associated with poor prognoses. However, early detection of AS is difficult because of the long asymptomatic period experienced by many patients, during which screening tools are ineffective. The aim of this study was to develop and validate a deep learning-based algorithm, combining a multilayer perceptron and convolutional neural network, for detecting significant AS using ECGs. Methods and Results This retrospective cohort study included adult patients who had undergone both ECG and echocardiography. A deep learning-based algorithm was developed using 39 371 ECGs. Internal validation of the algorithm was performed with 6453 ECGs from one hospital, and external validation was performed with 10 865 ECGs from another hospital. The end point was significant AS (beyond moderate). We used demographic information, features, and 500-Hz, 12-lead ECG raw data as predictive variables. In addition, we identified which region had the most significant effect on the decision-making of the algorithm using a sensitivity map. During internal and external validation, the areas under the receiver operating characteristic curve of the deep learning-based algorithm using 12-lead ECG for detecting significant AS were 0.884 (95% CI, 0.880-0.887) and 0.861 (95% CI, 0.858-0.863), respectively; those using a single-lead ECG signal were 0.845 (95% CI, 0.841-0.848) and 0.821 (95% CI, 0.816-0.825), respectively. The sensitivity map showed the algorithm focused on the T wave of the precordial lead to determine the presence of significant AS. Conclusions The deep learning-based algorithm demonstrated high accuracy for significant AS detection using both 12-lead and single-lead ECGs. 



Algoritmus AI a EKG

Kwon JM et al. J Am Heart Assoc. 2020;9(7):e014717. doi:10.1161/JAHA.119.014717

Předvádějící
Poznámky prezentace
Kwon JM, Lee SY, Jeon KH, et al. Deep Learning-Based Algorithm for Detecting Aortic Stenosis Using Electrocardiography. J Am Heart Assoc. 2020;9(7):e014717. doi:10.1161/JAHA.119.014717



Výkon algoritmu 
AI pre detekciu 

aortálnej stenózy

ROC krivka je graf, ktorý popisuje
kvalitu bináreho klasifikátora v 

závislosti na nastavení jeho
klasifikačního prahu. 

Kwon JM et al. J Am Heart Assoc. 2020;9(7):e014717. doi:10.1161/JAHA.119.014717
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AI-ECG pre skríning
aortálnej stenózy

pomocou
konvolučných

neuronálnych sietí
(CNN)

Předvádějící
Poznámky prezentace
 AI-ECG for Aortic Stenosis screening using convolutional neural network (CNN).

Unless provided in the caption above, the following copyright applies to the content of this slide: Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2021. For permissions, please email: journals.permissions@oup.com.This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
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Positive predictive value was low at 10.5%, but 
negative predictive value was 98.9%.

Předvádějící
Poznámky prezentace
Cohen-Shelly M, Attia ZI, Friedman PA, Ito S, Essayagh BA, Ko WY, Murphree DH, Michelena HI, Enriquez-Sarano M, Carter RE, Johnson PW, Noseworthy PA, Lopez-Jimenez F, Oh JK. Electrocardiogram screening for aortic valve stenosis using artificial intelligence. Eur Heart J. 2021 Mar 22:ehab153. doi: 10.1093/eurheartj/ehab153. Epub ahead of print. PMID: 33748852.Long-term incidence of developing moderate or severeaortic stenosis (AS) in patients with normal or mild AS at initial artificialintelligence electrocardiogram (AI-ECG) classification. Longtermoutcome of patients with mild AS or without AS at the time ofinitial classification by transthoracic echocardiography is shown. Theincidence of moderate or severe AS is shown and compared betweenpatients with false-positive (FP) results and those with truenegative(TN) results stratified by the initial AI-ECG classification.The estimated cumulative incidence is reported along the cumulativeincidence curve for each group at the times indicated along theaxis. Number at risk is also reported in the lower panel along withthe axis.Abstract Aims: Early detection of aortic stenosis (AS) is becoming increasingly important with a better outcome after aortic valve replacement in asymptomatic severe AS patients and a poor outcome in moderate AS. We aimed to develop artificial intelligence-enabled electrocardiogram (AI-ECG) using a convolutional neural network to identify patients with moderate to severe AS. Methods and results: Between 1989 and 2019, 258 607 adults [mean age 63 ± 16.3 years; women 122 790 (48%)] with an echocardiography and an ECG performed within 180 days were identified from the Mayo Clinic database. Moderate to severe AS by echocardiography was present in 9723 (3.7%) patients. Artificial intelligence training was performed in 129 788 (50%), validation in 25 893 (10%), and testing in 102 926 (40%) randomly selected subjects. In the test group, the AI-ECG labelled 3833 (3.7%) patients as positive with the area under the curve (AUC) of 0.85. The sensitivity, specificity, and accuracy were 78%, 74%, and 74%, respectively. The sensitivity increased and the specificity decreased as age increased. Women had lower sensitivity but higher specificity compared with men at any age groups. The model performance increased when age and sex were added to the model (AUC 0.87), which further increased to 0.90 in patients without hypertension. Patients with false-positive AI-ECGs had twice the risk for developing moderate or severe AS in 15 years compared with true negative AI-ECGs (hazard ratio 2.18, 95% confidence interval 1.90-2.50). Conclusion: An AI-ECG can identify patients with moderate or severe AS and may serve as a powerful screening tool for AS in the community. Keywords: Aortic stenosis; Artificial intelligence; Convolutional neural network; ECG. 



NEKARDIÁLNE OCHORENIA



• Using 2 leads of an ECG acquired from patients 
with chronic kidney disease, a DL detected 
elevated potassium with an AUC of 0.853 to 0.883 
and a sensitivity of 88.9% to 91.3%. 

• The application of AI to the ECG may enable 
screening for hyperkalemia (HR for death with 
hyperkalemia as high as 13!)



AI and personal data protection

Goto S, Goto S. Circ Rep. 2019 Nov 2;1(11):481-486. doi: 10.1253/circrep.CR-19-0096



AI heralds a new era in expanding the role of ECG
• ECG is rich on relevant pathophysiologic information which remained 

largely undiscovered
• Deep learning allows for identifying both ”visible and invisible” 

contents of the ECG.
• Two important advantages offered:

• compensate for lack of expertise in ECG interpetation by non-specialist
• detecting early stages of various disease processes incl. non-cardiac diseases 

not discernable otherwise

• Potential to diagnose and predict 
• later manifestatiob of the disease (aortic stenosis, AFIB, HCMP)
• disease with intermittent phenotype manifestation (paroxysmal arrhythmias)
• ECG as biomarker for systemic diseases (i.e. NPV for +SARS-CoV2 - 99% …)



AI V KARDIOLÓGII

Attia Z et al. Eur Heart J. 2021;ehab649. doi:10.1093/eurheartj/ehab649

Předvádějící
Poznámky prezentace
Attia ZI, Harmon DM, Behr ER, Friedman PA. Application of artificial intelligence to the electrocardiogram [published online ahead of print, 2021 Sep 17]. Eur Heart J. 2021;ehab649. doi:10.1093/eurheartj/ehab649Artificial intelligence (AI) has given the electrocardiogram (ECG) and clinicians reading them super-human diagnostic abilities. Trained without hard-coded rules by finding often subclinical patterns in huge datasets, AI transforms the ECG, a ubiquitous, non-invasive cardiac test that is integrated into practice workflows, into a screening tool and predictor of cardiac and non-cardiac diseases, often in asymptomatic individuals. This review describes the mathematical background behind supervised AI algorithms, and discusses selected AI ECG cardiac screening algorithms including those for the detection of left ventricular dysfunction, episodic atrial fibrillation from a tracing recorded during normal sinus rhythm, and other structural and valvular diseases. The ability to learn from big data sets, without the need to understand the biological mechanism, has created opportunities for detecting non-cardiac diseases as COVID-19 and introduced challenges with regards to data privacy. Like all medical tests, the AI ECG must be carefully vetted and validated in real-world clinical environments. Finally, with mobile form factors that allow acquisition of medical-grade ECGs from smartphones and wearables, the use of AI may enable massive scalability to democratize healthcare. 



Umelá inteligencia (AI) a EKG
• AI otvára pre EKG netušený, v podstate nadľudský potenciál 

pre diagnostiku KV ochorení
• Schopnosť učiť sa z obrovského objemu dát (bez potreby 

súčasnej znalosti ich biologických mechanizmov) vytvára 
možnosť diagnostikovať aj nekardiálne ochorenia /cirhóza 
pečene, COVID-19,…)

• Vzhľadom k širokej dostupnosti EKG a jeho získania pomocou 
“nositeľných! senzorov (“wearables”) môže byť AI cestou k 
“demokratizácii” - t.j. univerzálnej prístupnosti pokročilej  
kardiovaskulárnej medicíny 



A little learning is a dangerous thing;
drink deep, or taste not the Pierian
spring:
there shallow draughts intoxicate the 
brain,
and drinking largely sobers us again. 

Alexander Pope
"An Essay on Criticism", (1709)



ĎAKUJEM ZA POZORNOSŤ!



THANK YOU FOR YOUR TIME AND 
ATTENTION !
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