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120 years of electrocardiography

ECG — ubiquitous diagnostic tool in clinical medicine

* |ow cost, rapid, simple to obtain
e available at point-of-care

Inherent contradiction within electrocardiography

* Acquisition is standardized and highly reproducible
* Interpretation is highly variable - according to variable human

expertise



EKG - bohaty zdroj fyziologickych informacii,
ktoré reflektuju stav srdca i inych systémov

Microelectrode E: .

SINGLE VOLTAGE OF ECG: RECORD
HEART CELL SINGLE CELL FROM BODY SURFACE

‘ .
, T - ECG - ELECTROCARDIOGRAM & -~
| IV PSP PAT ST SR WU D R P Widely available, inexpensive, painless test
|

Attia Z et al. Eur Heart J. 2021;ehab649. doi:10.1093/eurheartj/ehab649


Předvádějící
Poznámky prezentace
Attia ZI, Harmon DM, Behr ER, Friedman PA. Application of artificial intelligence to the electrocardiogram [published online ahead of print, 2021 Sep 17]. Eur Heart J. 2021;ehab649. doi:10.1093/eurheartj/ehab649

Microelectrodes in a single myocyte (top left) record an action potential (depicted middle panel). Ionic currents and their propagation
are sensitive to cardiac and non-cardiac conditions and structural changes.When the aggregated action potentials are recorded at the body surface
(top right), the insuring tracing is the electrocardiogram(bottom). ECG, electrocardiogram.


Artificial intelligence (AI) has given the electrocardiogram (ECG) and clinicians reading them super-human diagnostic abilities. Trained without hard-coded rules by finding often subclinical patterns in huge datasets, AI transforms the ECG, a ubiquitous, non-invasive cardiac test that is integrated into practice workflows, into a screening tool and predictor of cardiac and non-cardiac diseases, often in asymptomatic individuals. This review describes the mathematical background behind supervised AI algorithms, and discusses selected AI ECG cardiac screening algorithms including those for the detection of left ventricular dysfunction, episodic atrial fibrillation from a tracing recorded during normal sinus rhythm, and other structural and valvular diseases. The ability to learn from big data sets, without the need to understand the biological mechanism, has created opportunities for detecting non-cardiac diseases as COVID-19 and introduced challenges with regards to data privacy. Like all medical tests, the AI ECG must be carefully vetted and validated in real-world clinical environments. Finally, with mobile form factors that allow acquisition of medical-grade ECGs from smartphones and wearables, the use of AI may enable massive scalability to democratize healthcare. 


Aims to eliminate the varability of ECG
interpretation are not new

 Computer based interpretation

* Applying predefined rules based on previous experience
derived from experimental and clinical observation

* Artificial intelligence
* Deep learning - neural networks

* CNNs — convolutional neural networks - ,image
recognition”



CiM VIAC INFORMACII O ELEKTRICKOM POLI SRDCA
MAME, TYM LEPSIE MOZEME DIAGNOSTIKOVAT
KARDIALNE OCHORENIA.

ALE: ODKIAL CERPAT INFORMACIE?
EXTENZIVNY VERSUS INTENZIVNY PRISTUP



Computers for ECG interpretation

1.Mimicking human interpretation by applying
predefined rules (traditional computer interpretation)
= i.e. computer searches for digital counterparts of
visible ecg changes.

2.Artificial intelligence (Al) - extracting information
beyond the level of recognition by humans

3.Expanding the number of leads to increase precision.
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Noninvasive PVC localization

« Patient PO34 with implanted pacemaker. During spontaneous activity
the PVC focus could be localizaed in the basal lateral segment of
the left ventricle.

Time: 12 ms Min,Max,Step: -0.064, +0.185 0.02 mV

The PVC focus was localized from a
BSPM 12 ms after the PVC onset.







SVET UMELEJ INTELIGENCIE

de Marvao A. et al. Heart 2020;106:399-400.



Machine learning (Al) by an artificial neural network
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Miller DD Cardiology in Review 2020;28: 53—64


Předvádějící
Poznámky prezentace
Representation of machine learning by an artificial neural network (ANN) for complex high-dimensional genetic data
decomposition (upper), natural language processing of electronic medical records (EMR) text to create chronic disease outcome
trajectory predictions (middle), and generative adversarial network (GAN) processing of clinical brain magnetic resonance images
to create a virtual computed tomography (CT) scan (lower). Convolutional neural networks (CNNs) are frequently utilized
for medical image AI analytics. CHF, congestive heart failure; DM, diabetes mellitus.



Artificial intelligence

* ML aims to characterise relationships among multiple variables or
features within data sets that are not readily discernible to humans
and diffcult to discover using traditional biostatistical methods

* ML can only yield associations and correlations; currently it cannot
make definitive cause—-effect inferences.

* The principal tasks of ML comprise: classification (e.g. distinguishing
disease from non-disease); prediction (or regression) (e.g. estimating
risk of future clinical events); and discovery (e.g. a new use for a drug
or a new disease phenotype).



Předvádějící
Poznámky prezentace
Scott IA. Demystifying machine learning: a primer for physicians. Intern Med J. 2021;51(9):1388-1400. doi:10.1111/imj.15200

Abstract 
Machine learning is a tool for analysing digitised data sets and formulating predictions that can optimise clinical decision-making. It aims to identify complex patterns in large data sets and encode them into models that can then classify new unseen cases or make predictions on new data. Machine learning methods take several forms and individual models can be of many different types. More than 50 models have been approved for use in routine healthcare, and the numbers continue to grow exponentially. The reliability and robustness of any model depends on multiple factors, including the quality and quantity of the data used to develop the models, and the selection of features in the data considered most important to maximising accuracy. In ensuring models are safe, effective and reproducible in routine care, physicians need to have some understanding of how these models are developed and evaluated, and to collaborate with data and computer scientists in their design and validation. This narrative review introduces principles, methods and examples of machine learning in a way that does not require mastery of highly complex statistical and computational concepts. 
Keywords: deep learning; machine learning; prediction model. 



ECG = ideal target
for applying Al and deep learning

*Widely available digital data

*Easily stored and transfered

*Huge datasets available

*Powerful computing readily available



STROJOVE UCENIE (MACHINE LEARNING)

 Strojoveé ucenie, jeden z druhov umelej inteligencie, funguje
na zaklade identifikacie vzorov v dostupnych udajoch a
nasledného uplatnenia tychto znalosti na nové udaje . Cim
vacsi je subor udajov, tym lahsie je mozné odhalit aj
nepatrné suvislosti.

* \yznamné pokroky v tychto technolégiach sa dosiahli
pouzitim velkych suborov udajov (“big data”) a nevidanej
vypoctove; sily.



Umela inteligencia v elektrokardiografii

Y i e

Diagnosis

-Left ventricular systolic dysfunction

-Heart failure with preserved ejection fraction
-Aortic valve stenosis

-Mitral valve regurgitation

-Pulmonary hypertension

-Left ventricular hypertrophy

-Myocardial infarction with or without ST elevation
-Arrhythmia

-Hyperkalemia

-Anemia

Prediction

-Paroxysmal atrial fibrillation

-Patient deterioration and cardiac arrest
-Aortic valve stenosis

-Heart failure with preserved ejection fraction
-Mitral valve regurgitation

Kwn J-M et al. Eur Heart J 2021: 42, 2896—-2898 doi:10.1093/eurheartj/ehab090



Agreement Between Artificial Neural Networks and Experienced
Electrocardiographer on Electrocardiographic Diagnosis of Healed

Myocardial Infarction

BO HEDEN, MD, MATTIAS OHLSSON, PuD, RALF RITTNER, MSc, OLLE PAHLM, MD, PuD,
WESLEY K. HAISTY, Jr.,, MD,* CARSTEN PETERSON, PuD, LARS EDENBRANDT, MD, PuD

Lund, Sweden and Winston-Salem, North Carolina

Objectives. The purpose of this study was to compare the
diagnoses of healed myocardial infarction made from the 12-lead
electrocardiogram (ECG) by artificial neural networks and an
experienced electrocardiographer.

Background. Artificial neural networks have proved of value in
pattern recognition tasks. Studies of their utility in ECG inter-
pretation have shown performance exceeding that of conventional
ECG interpretation programs. The latter present verbal state-
ments, often with an indication of the likelihood for a certain
diagnosis, such as “possible left ventricular hypertrophy.” A
neural network presents its output as a numeric value between 0
and 1; however, these values can be interpreted as Bayesian
probabilities.

Methods. The study was based on 351 healthy volunteers and
1,313 patients with a history of chest pain who had undergone

diagnostic cardiac catheterization. A 12-lead ECG was recorded in
each subject. An expert electrocardiographer classified the ECGs
in five different groups by estimating the probability of anterior
myocardial infarction. Artificial neural networks were trained and
tested to diagnose anterior myocardial infarction. The network
outputs were divided into five groups by using the output values
and four thresholds between 0 and 1.

Resulfs. The neural networks diagnosed healed anterior myo-
cardial infarctions at high levels of sensitivity and specificity. The
network outputs were transformed to verbal statements, and the
agreement between these probability estimates and those of an
expert electrocardiographer was high.

Conclusions. Artificial neural networks can be of value in
automated interpretation of ECGs in the near future.

(J Am Coll Cardiol 1996;28:1012-6)



Neural network is constructed by multiple units of statistical model
called “neuron” that simulates the function of neuron cells

| T'Weights]

| The training is done by adjusting the “weights” to make
difference between output and label smallest

Goto S, Goto S. Circ Rep. 2019 Nov 2;1(11):481-486. doi: 10.1253/circrep.CR-19-0096


Předvádějící
Poznámky prezentace
Goto S, Goto S. Application of Neural Networks to 12-Lead Electrocardiography　- Current Status and Future Directions. Circ Rep. 2019 Nov 2;1(11):481-486. doi: 10.1253/circrep.CR-19-0096. PMID: 33693089; PMCID: PMC7897559.

Schematic illustration of neuron units used in neural network models. The neuron unit simulates the function of a biological neuron by multiplying the input by weights and outputting the result through the activation layer




Umela inteligencia v elektrokardiografii

Y i e

Diagnosis

-Left ventricular systolic dysfunction

-Heart failure with preserved ejection fraction
-Aortic valve stenosis

-Mitral valve regurgitation

-Pulmonary hypertension

-Left ventricular hypertrophy

-Myocardial infarction with or without ST elevation
-Arrhythmia

-Hyperkalemia

-Anemia

Prediction

-Paroxysmal atrial fibrillation

-Patient deterioration and cardiac arrest
-Aortic valve stenosis

-Heart failure with preserved ejection fraction
-Mitral valve regurgitation

Kwn J-M et al. Eur Heart J 2021: 42, 2896—-2898 doi:10.1093/eurheartj/ehab090
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Předvádějící
Poznámky prezentace
Buttner R, Burns E https://litfl.com/atrial-fibrillation-ecg-library//



Lead | —\—"t-'/\————ﬂ'—w Convolutional Convolutional

layer layer
yleEnmpI{a- signal
5 L -—
4 14 29 20 4 53 S8 - - = = -107 -107 -97 -47 -107 -112 -107 -112 -107 —> Pooling -
Numerical values (uV) ' : |
a Convolutional blocks
Lead Il
yl'SEnmpI{a- signal
0 0 23 2 6 B8 03 -10 -87 —_ P -— | ™ T T
Numerical values (uV)
-~ N
(J'-. C b "::’
Lead V, QL0
lSample signal
P
0 2 20 29 34 39 44 SO - - - - -170 -101-120 -91 -101 -85 -02 -§3 -103 —= Pooling -— Model

Mumerical values (pV) output

Siontis KC et al. Nat Rev Cardiol. 2021 Feb 1:1-14. doi: 10.1038/s41569-020-00503-2.



ECG acquired over 10 s
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Atrial fibrillation detected over a longer period than the ECG

Siontis KC et al. Nat Rev Cardiol. 2021 Feb 1:1-14. doi: 10.1038/s41569-020-00503-2.


Předvádějící
Poznámky prezentace
Siontis KC, Noseworthy PA, Attia ZI, Friedman PA. Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nat Rev Cardiol. 2021 Feb 1:1–14. doi: 10.1038/s41569-020-00503-2. Epub ahead of print. PMID: 33526938; PMCID: PMC7848866.

development of a convolutional neural network using the 12-lead
ECg and application to detect silent atrial fibrillation. a | The analogue
electrocardiogram (ECG) signal is converted to a digital recording, resulting
in a list of numerical values corresponding to the amplitude of the signal.
(The numerical values depicted are arbitrary and shown for illustrative
purposes only.) These numerical values are then convolved with the network
weights within each lead and across leads, feeding sequential layers of
convolutions until the final model output is reached. b | With the use of a
trained, deep- learning artificial intelligence- enhanced ECG (AI–EGG)
model, a one- off, standard, 12- lead, sinus- rhythm ECG can become a
surrogate for prolonged rhythm monitoring for the detection of silent atrial
fibrillation. Part a adapted with permission from ref.7




An artificial intelligence-enabled ECG algorithm for the
identification of patients with atrial fibrillation during sinus
rhythm: a retrospective analysis of outcome prediction

Zachi| Attia*, Peter A Noseworthy*, Francisco Lopez-Jimenez, Samuel ) Asirvatham, Abhishek | Deshmukh, Bernard ) Gersh, Rickey E Carter,
Xiaoxi Yao, Alejandro A Rabinstein, Brad | Erickson, SurajKapa, Paul A Friedman

Patient with no atrial fibrillation rhythms recorded

Index ECG (ie, first ECG available) Bl Normal sinus rhythm
¢ B Atrial fibrillation or atrial flutter

I I I Window of i ntere*::¢>

Patient with at least one atrial fibrillation rhythm recorded

First ECG available Index ECG

¢ 31days ¢
e Al
I I I I I:I I I IWindnwofinteres>
| I

January February March April |

Attia ZI et al. Lancet. 2019 Sep 7;,394(10201):861-867. doi: 10.1016/50140-6736(19)31721-0.


Předvádějící
Poznámky prezentace
Attia ZI, Noseworthy PA, Lopez-Jimenez F, Asirvatham SJ, Deshmukh AJ, Gersh BJ, Carter RE, Yao X, Rabinstein AA, Erickson BJ, Kapa S, Friedman PA. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet. 2019 Sep 7;394(10201):861-867. doi: 10.1016/S0140-6736(19)31721-0. Epub 2019 Aug 1. PMID: 31378392.

ECG selection and windows of interest for patients with multiple ECGs
The figure shows an example of ECG selection for two patients with multiple ECGs over the same year. We used all
normal sinus rhythm ECGs for patients with no ECGs with atrial fibrillation recorded and the window of interest
began on the date of their first ECG. For patients with at least one atrial fibrillation rhythm recorded, the first ECG
recording atrial fibrillation or atrial flutter was the index ECG and the window of interest began 31 days before the
index ECG. For all patients, the window of interest extended until study end. ECG=electrocardiograph
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An artificial intelligence-enabled ECG algorithm for the
identification of patients with atrial fibrillation during sinus
rhythm: a retrospective analysis of outcome prediction

Zachil Attia*, Peter A Noseworthy*, Francisco Lopez-Jimenez, Samuel ] Asirvatham, Abhishek ] Deshmukh, Bernard ] Gersh, Rickey E Carter,
Xiaoxi Yao, Alejandro A Rabinstein, Brad Erickson, Suraj Kapa, Paul A Friedman

Attia ZI et al. Lancet. 2019 Sep 7;,394(10201):861-867. doi: 10.1016/50140-6736(19)31721-0.


Předvádějící
Poznámky prezentace
Attia ZI, Noseworthy PA, Lopez-Jimenez F, Asirvatham SJ, Deshmukh AJ, Gersh BJ, Carter RE, Yao X, Rabinstein AA, Erickson BJ, Kapa S, Friedman PA. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet. 2019 Sep 7;394(10201):861-867. doi: 10.1016/S0140-6736(19)31721-0. Epub 2019 Aug 1. PMID: 31378392.

Abstract 
Background: Atrial fibrillation is frequently asymptomatic and thus underdetected but is associated with stroke, heart failure, and death. Existing screening methods require prolonged monitoring and are limited by cost and low yield. We aimed to develop a rapid, inexpensive, point-of-care means of identifying patients with atrial fibrillation using machine learning. 
Methods: We developed an artificial intelligence (AI)-enabled electrocardiograph (ECG) using a convolutional neural network to detect the electrocardiographic signature of atrial fibrillation present during normal sinus rhythm using standard 10-second, 12-lead ECGs. We included all patients aged 18 years or older with at least one digital, normal sinus rhythm, standard 10-second, 12-lead ECG acquired in the supine position at the Mayo Clinic ECG laboratory between Dec 31, 1993, and July 21, 2017, with rhythm labels validated by trained personnel under cardiologist supervision. We classified patients with at least one ECG with a rhythm of atrial fibrillation or atrial flutter as positive for atrial fibrillation. We allocated ECGs to the training, internal validation, and testing datasets in a 7:1:2 ratio. We calculated the area under the curve (AUC) of the receiver operatoring characteristic curve for the internal validation dataset to select a probability threshold, which we applied to the testing dataset. We evaluated model performance on the testing dataset by calculating the AUC and the accuracy, sensitivity, specificity, and F1 score with two-sided 95% CIs. 
Findings: We included 180 922 patients with 649 931 normal sinus rhythm ECGs for analysis: 454 789 ECGs recorded from 126 526 patients in the training dataset, 64 340 ECGs from 18 116 patients in the internal validation dataset, and 130 802 ECGs from 36 280 patients in the testing dataset. 3051 (8·4%) patients in the testing dataset had verified atrial fibrillation before the normal sinus rhythm ECG tested by the model. A single AI-enabled ECG identified atrial fibrillation with an AUC of 0·87 (95% CI 0·86-0·88), sensitivity of 79·0% (77·5-80·4), specificity of 79·5% (79·0-79·9), F1 score of 39·2% (38·1-40·3), and overall accuracy of 79·4% (79·0-79·9). Including all ECGs acquired during the first month of each patient's window of interest (ie, the study start date or 31 days before the first recorded atrial fibrillation ECG) increased the AUC to 0·90 (0·90-0·91), sensitivity to 82·3% (80·9-83·6), specificity to 83·4% (83·0-83·8), F1 score to 45·4% (44·2-46·5), and overall accuracy to 83·3% (83·0-83·7). 
Interpretation: An AI-enabled ECG acquired during normal sinus rhythm permits identification at point of care of individuals with atrial fibrillation



An artificial intelligence-enabled ECG algorithm for the
identification of patients with atrial fibrillation during sinus
rhythm: a retrospective analysis of outcome prediction

Zachi| Attia*, Peter A Noseworthy*, Francisco Lopez-Jimenez, Samuel ) Asirvatham, Abhishek | Deshmukh, Bernard ) Gersh, Rickey E Carter,
Xiaoxi Yao, Alejandro A Rabinstein, Brad | Erickson, SurajKapa, Paul A Friedman

AUC Sensitivity Specificity F1score Accuracy

Main analysis 0-87(0-86-0-88) 7190% (775-804)  795%(790-799)  392%(381-403)  794%(79:0-799)
Secondary analysis 090 (0-90-0-91) 82:3% (80-9-83.6) 83:4% (83.0-83-8) 45-4% (44-2-46°5) 83-3% (83-0-837)

Datain parentheses are 95% Cls. In the main analysis, only the score of the first normal sinus thythm ECG in the window of interest was used. In the secondary analysis,
the highest score for all ECGs done in the first month of the window of interest was used. AUC=area under the curve. ECG=electrocardiograph.

Attia ZI et al. Lancet. 2019 Sep 7;,394(10201):861-867. doi: 10.1016/50140-6736(19)31721-0.


Předvádějící
Poznámky prezentace
Attia ZI, Noseworthy PA, Lopez-Jimenez F, Asirvatham SJ, Deshmukh AJ, Gersh BJ, Carter RE, Yao X, Rabinstein AA, Erickson BJ, Kapa S, Friedman PA. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet. 2019 Sep 7;394(10201):861-867. doi: 10.1016/S0140-6736(19)31721-0. Epub 2019 Aug 1. PMID: 31378392.

Abstract 
Background: Atrial fibrillation is frequently asymptomatic and thus underdetected but is associated with stroke, heart failure, and death. Existing screening methods require prolonged monitoring and are limited by cost and low yield. We aimed to develop a rapid, inexpensive, point-of-care means of identifying patients with atrial fibrillation using machine learning. 
Methods: We developed an artificial intelligence (AI)-enabled electrocardiograph (ECG) using a convolutional neural network to detect the electrocardiographic signature of atrial fibrillation present during normal sinus rhythm using standard 10-second, 12-lead ECGs. We included all patients aged 18 years or older with at least one digital, normal sinus rhythm, standard 10-second, 12-lead ECG acquired in the supine position at the Mayo Clinic ECG laboratory between Dec 31, 1993, and July 21, 2017, with rhythm labels validated by trained personnel under cardiologist supervision. We classified patients with at least one ECG with a rhythm of atrial fibrillation or atrial flutter as positive for atrial fibrillation. We allocated ECGs to the training, internal validation, and testing datasets in a 7:1:2 ratio. We calculated the area under the curve (AUC) of the receiver operatoring characteristic curve for the internal validation dataset to select a probability threshold, which we applied to the testing dataset. We evaluated model performance on the testing dataset by calculating the AUC and the accuracy, sensitivity, specificity, and F1 score with two-sided 95% CIs. 
Findings: We included 180 922 patients with 649 931 normal sinus rhythm ECGs for analysis: 454 789 ECGs recorded from 126 526 patients in the training dataset, 64 340 ECGs from 18 116 patients in the internal validation dataset, and 130 802 ECGs from 36 280 patients in the testing dataset. 3051 (8·4%) patients in the testing dataset had verified atrial fibrillation before the normal sinus rhythm ECG tested by the model. A single AI-enabled ECG identified atrial fibrillation with an AUC of 0·87 (95% CI 0·86-0·88), sensitivity of 79·0% (77·5-80·4), specificity of 79·5% (79·0-79·9), F1 score of 39·2% (38·1-40·3), and overall accuracy of 79·4% (79·0-79·9). Including all ECGs acquired during the first month of each patient's window of interest (ie, the study start date or 31 days before the first recorded atrial fibrillation ECG) increased the AUC to 0·90 (0·90-0·91), sensitivity to 82·3% (80·9-83·6), specificity to 83·4% (83·0-83·8), F1 score to 45·4% (44·2-46·5), and overall accuracy to 83·3% (83·0-83·7). 
Interpretation: An AI-enabled ECG acquired during normal sinus rhythm permits identification at point of care of individuals with atrial fibrillation




“Torsade de Points” Tachycardia in long QT syndrome

0

Gabel A et al., Am J Cardiol 1999



LONG QT SYNDROME

Flgure 2: Characteristics of LQTS 1-3
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Source: Adapted from Rev Esp Cardiol. 2007;60(7): 738-5. Published with permission of Ekevier Esparia.



Předvádějící
Poznámky prezentace
Bos JM, Attia ZI, Albert DE, Noseworthy PA, Friedman PA, Ackerman MJ. Use of Artificial Intelligence and Deep Neural Networks in Evaluation of Patients With Electrocardiographically Concealed Long QT Syndrome From the Surface 12-Lead Electrocardiogram. JAMA Cardiol. 2021 May 1;6(5):532-538. doi: 10.1001/jamacardio.2020.7422. PMID: 33566059; PMCID: PMC7876623.



Training artificial intelligence models
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European Society doi:10.1093/eurheartj/ehab588 Arrhythmias
of Cardiology

Deep learning analysis of electrocardiogram for
risk prediction of drug-induced arrhythmias and
diagnosis of long QT syndrome



Předvádějící
Poznámky prezentace
Prifti E, Fall A, Davogustto G, et al. Deep learning analysis of electrocardiogram for risk prediction of drug-induced arrhythmias and diagnosis of long QT syndrome. Eur Heart J. 2021;42(38):3948-3961. doi:10.1093/eurheartj/ehab588

Convolutional neural network models applied to ECGs outperformQTc measurements to identify exposure to drugs blocking IKr, congenital longQT syndrome,�and are greatest shortly after a drug-induced Torsade-de-Pointes episode.�

Abstract 
Aims: Congenital long-QT syndromes (cLQTS) or drug-induced long-QT syndromes (diLQTS) can cause torsade de pointes (TdP), a life-threatening ventricular arrhythmia. The current strategy for the identification of drugs at the high risk of TdP relies on measuring the QT interval corrected for heart rate (QTc) on the electrocardiogram (ECG). However, QTc has a low positive predictive value. 
Methods and results: We used convolutional neural network (CNN) models to quantify ECG alterations induced by sotalol, an IKr blocker associated with TdP, aiming to provide new tools (CNN models) to enhance the prediction of drug-induced TdP (diTdP) and diagnosis of cLQTS. Tested CNN models used single or multiple 10-s recordings/patient using 8 leads or single leads in various cohorts: 1029 healthy subjects before and after sotalol intake (n = 14 135 ECGs); 487 cLQTS patients (n = 1083 ECGs: 560 type 1, 456 type 2, 67 type 3); and 48 patients with diTdP (n = 1105 ECGs, with 147 obtained within 48 h of a diTdP episode). CNN models outperformed models using QTc to identify exposure to sotalol [area under the receiver operating characteristic curve (ROC-AUC) = 0.98 vs. 0.72, P ≤ 0.001]. CNN models had higher ROC-AUC using multiple vs. single 10-s ECG (P ≤ 0.001). Performances were comparable for 8-lead vs. single-lead models. CNN models predicting sotalol exposure also accurately detected the presence and type of cLQTS vs. healthy controls, particularly for cLQT2 (AUC-ROC = 0.9) and were greatest shortly after a diTdP event and declining over time (P ≤ 0.001), after controlling for QTc and intake of culprit drugs. ECG segment analysis identified the J-Tpeak interval as the best discriminator of sotalol intake. 
Conclusion: CNN models applied to ECGs outperform QTc measurements to identify exposure to drugs altering the QT interval, congenital LQTS, and are greatest shortly after a diTdP episode. 
Keywords: Interpretability; Long QT; Machine learning; Risk prediction; Torsades de pointes. 
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Interpretability of the sotalol footprint on the electrocardiogramsignal. This figure displays an averaged signal of the standardized electrocardiogramfor
each segmented beat for leads LII, V2, and V3. All signals fromthe same time points were analysed together. Similarly, the standardized
feature importance profile is summarized and laid behind the electrocardiogram profile. Colours for both the electrocardiogram and FIP indicate intensity
of the feature importance profile.


Abstract 
Aims: Congenital long-QT syndromes (cLQTS) or drug-induced long-QT syndromes (diLQTS) can cause torsade de pointes (TdP), a life-threatening ventricular arrhythmia. The current strategy for the identification of drugs at the high risk of TdP relies on measuring the QT interval corrected for heart rate (QTc) on the electrocardiogram (ECG). However, QTc has a low positive predictive value. 
Methods and results: We used convolutional neural network (CNN) models to quantify ECG alterations induced by sotalol, an IKr blocker associated with TdP, aiming to provide new tools (CNN models) to enhance the prediction of drug-induced TdP (diTdP) and diagnosis of cLQTS. Tested CNN models used single or multiple 10-s recordings/patient using 8 leads or single leads in various cohorts: 1029 healthy subjects before and after sotalol intake (n = 14 135 ECGs); 487 cLQTS patients (n = 1083 ECGs: 560 type 1, 456 type 2, 67 type 3); and 48 patients with diTdP (n = 1105 ECGs, with 147 obtained within 48 h of a diTdP episode). CNN models outperformed models using QTc to identify exposure to sotalol [area under the receiver operating characteristic curve (ROC-AUC) = 0.98 vs. 0.72, P ≤ 0.001]. CNN models had higher ROC-AUC using multiple vs. single 10-s ECG (P ≤ 0.001). Performances were comparable for 8-lead vs. single-lead models. CNN models predicting sotalol exposure also accurately detected the presence and type of cLQTS vs. healthy controls, particularly for cLQT2 (AUC-ROC = 0.9) and were greatest shortly after a diTdP event and declining over time (P ≤ 0.001), after controlling for QTc and intake of culprit drugs. ECG segment analysis identified the J-Tpeak interval as the best discriminator of sotalol intake. 
Conclusion: CNN models applied to ECGs outperform QTc measurements to identify exposure to drugs altering the QT interval, congenital LQTS, and are greatest shortly after a diTdP episode. 
Keywords: Interpretability; Long QT; Machine learning; Risk prediction; Torsades de pointes. 
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Use of Artificial Intelligence and Deep Neural Networks in Evaluation
of Patients With Electrocardiographically Concealed Long QT Syndrome
From the Surface 12-Lead Electrocardiogram

J. Martijn Bos, MD, PhD; Zachi |. Attia, PhD; David E. Albert, MD; Peter A. Noseworthy, MD;
Paul A. Friedman, MD: Michael J. Ackerman, MD, PhD

* the AI-ECG was found to distinguish patients with electrocardiographically
concealed LQTS

e provide a nearly 80% accurate pregenetic test
anticipation of LQTS genotype status.

* For a cut-off of QTc > 500ms, a strong diagnostic and risk marker for the
likelihood of LQTS, the area under the curve (AUC) was 0.97, with
sensitivity and specificity of 80.0%, and 94.4%, respectively, indicating
strong utility as a screening method.

Bos JM et al. JAMA Cardiol. 2021 May 1;6(5):532-538. doi: 10.1001/jamacardio.2020.7422
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A QRS SCORING SYSTEM FOR ASSESSING LEFT VENTRICULAR FUNCTION AFTER
MYOCARDIAL INFARCTION

SesastiaN T. Paumeri, M.D., Davip G. Harrison, M.D., Freperick R. Coss, M.D.,
KenNETH G. Morris, M.D., Frank E. HarreLL, Pu.D., Raymonp E. IpeExer, M.D., Pu.D.,
RonaLp H. SeLvesTer, M.D., anp GaLEn S. WaGNER, M.D.

Abstract A QRS scoring system for estimating the
size of a myocardial infarct was evaluated in 55
patients who did not have left ventricular hypertrophy
or conduction abnormalities. Serial 12-lead surface
electrocardiograms were scored according to a
29-point system based on the duration of Q and
R waves and on the ratios of R-to-Q amplitude and
R-to-S amplitude. The scores were proportional to the
severity of wall-motion abnormalities, which was de-
termined by radionuclide blood-pool scanning and
which correlated inversely with the radionuclide-

COHORT OF 84 PATIENTS

determined left ventricular ejection fraction (LVEF).
A score >3 was 93 per cent sensitive and B8 per
cent specific for both severe regional dyssynergy
and major depression of the global LVEF. The
following equation was used to estimate the LVEF
from the QRS score: LVEF (%) = 60 - (3 X QRS
score). .

After acute myocardial infarction, an electrocardio-
gram can provide important indirect quantitative in-
formation about left ventricular function. (N Engl J
Med. 1982; 306:4-9.)

N Engl J Med. 1982 Jan 7;306(1):4-9. doi: 10.1056/NEJM198201073060102
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Table 1. Criteria for Determining Point Score in the QRS
Scoring System.?
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ROBUST DIGITAL WAREHOUSE OF MEDICAL INFORMATION
CONVOLUTIONAL NEURAL NETWORK
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Attia Z et al. Eur Heart J. 2021;ehab649. doi:10.1093/eurheartj/ehab649
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A convolutional neural network is trained by feeding in labelled data (in this case voltage time waveforms), and through repetition it identifies
the patterns in the data that are associated with the data labels (in this example, heart pump strength, or ejection fraction). The network has
two components, convolution layers that extract image components to create the artificial intelligence features, and the fully connected layers that
comprise the model, that leads to the network output.While large data sets and robust computing are required to train networks, once trained, the
computation requirements are substantially reduced, permitting smartphone application. AI, artificial intelligence; EF, ejection fraction.


Artificial intelligence (AI) has given the electrocardiogram (ECG) and clinicians reading them super-human diagnostic abilities. Trained without hard-coded rules by finding often subclinical patterns in huge datasets, AI transforms the ECG, a ubiquitous, non-invasive cardiac test that is integrated into practice workflows, into a screening tool and predictor of cardiac and non-cardiac diseases, often in asymptomatic individuals. This review describes the mathematical background behind supervised AI algorithms, and discusses selected AI ECG cardiac screening algorithms including those for the detection of left ventricular dysfunction, episodic atrial fibrillation from a tracing recorded during normal sinus rhythm, and other structural and valvular diseases. The ability to learn from big data sets, without the need to understand the biological mechanism, has created opportunities for detecting non-cardiac diseases as COVID-19 and introduced challenges with regards to data privacy. Like all medical tests, the AI ECG must be carefully vetted and validated in real-world clinical environments. Finally, with mobile form factors that allow acquisition of medical-grade ECGs from smartphones and wearables, the use of AI may enable massive scalability to democratize healthcare. 
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Screening for cardiac contractile dysfunction 625,326 patients with ECG-TTE
g Y paired data

using an artificial intelligence-enabled
electrocardiogram
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Attia ZI et al. Nat Med. 2019 Jan;25(1):70-74. doi: 10.1038/s41591-018-0240-2
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Applying Al permits the ECG to

serve as a powerful tool:

e to screen for heart failure with LV
dysfunction

* to identify individuals at
increased risk for its development
in the future.
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Artificial intelligence disease previvor. Left panel—an apparently normal electrocardiogram is identified by artificial intelligence as being
associated with a low ejection fraction. A contemporaneous echocardiogram depicts normal ventricular function (ejection fraction 50%). Middle
panel—5 years later, at age 33, additional electrocardiograms changes are now visible to the human eye, and repeat echocardiography shows
depressed ventricular function (ejection fraction 31%). Right panel—risk of developing ejection fraction <35% with a positive artificial intelligence
electrocardiogram (red line) vs. with a negative artificial intelligence electrocardiogram for low ejection fraction (blue line). Further details in the text.
AI, artificial intelligence; ECG, electrocardiogram; EF, ejection fraction.



Artificial intelligence (AI) has given the electrocardiogram (ECG) and clinicians reading them super-human diagnostic abilities. Trained without hard-coded rules by finding often subclinical patterns in huge datasets, AI transforms the ECG, a ubiquitous, non-invasive cardiac test that is integrated into practice workflows, into a screening tool and predictor of cardiac and non-cardiac diseases, often in asymptomatic individuals. This review describes the mathematical background behind supervised AI algorithms, and discusses selected AI ECG cardiac screening algorithms including those for the detection of left ventricular dysfunction, episodic atrial fibrillation from a tracing recorded during normal sinus rhythm, and other structural and valvular diseases. The ability to learn from big data sets, without the need to understand the biological mechanism, has created opportunities for detecting non-cardiac diseases as COVID-19 and introduced challenges with regards to data privacy. Like all medical tests, the AI ECG must be carefully vetted and validated in real-world clinical environments. Finally, with mobile form factors that allow acquisition of medical-grade ECGs from smartphones and wearables, the use of AI may enable massive scalability to democratize healthcare. 


STRUKTURALNE OCHORENIA SRDCA



Patologic
findings in HCMP

WA
1 " g | # i
=l
1 / ' F &
i { |
¥ -
. i
B 1 ' r
o
s
- . i T,
g b ;
| | .".:__.
1
. . ) e .
i
i h I':'I'I
B A o 'I;_ ]
| "_""-. :
i ; [
1- N .
S

Maron BJ et al. NEJM 1987

]
d
[
-
Tl
4
L N
o
s
N
= =8
"
e
'3.



WWW

w@%ﬂ?

S

ﬁﬁﬁ

Buttner R, Burns E https://litfl.com/hypertrophic-cardiomyopathy-hcm-ecg-library/

ECG in HCMP



Convolutional Neural Network

Study Population Development for HCM Model Performance Characteristics
Detection by ECG

== Training AUC = 0.97
s == Validation AUC = 0.95
P - Testing AUC=0.96

00 02 04 06 08 10

1-Specificity

EEREEE, SEEEERRES Y Subgroup  Sensitivity Specificity

Age <40 Years 95% 92%

- ! [, == i i
S ! | I e R L E
| AT .
LT Tios e

“Normal” ECG 93% 87%

)
I \
»"a

Ko, W.-Y. et al. J Am Coll Cardiol. 2020;75(7):722-33.


Předvádějící
Poznámky prezentace
Ko WY, Siontis KC, Attia ZI, Carter RE, Kapa S, Ommen SR, Demuth SJ, Ackerman MJ, Gersh BJ, Arruda-Olson AM, Geske JB, Asirvatham SJ, Lopez-Jimenez F, Nishimura RA, Friedman PA, Noseworthy PA. Detection of Hypertrophic Cardiomyopathy Using a Convolutional Neural Network-Enabled Electrocardiogram. J Am Coll Cardiol. 2020 Feb 25;75(7):722-733. doi: 10.1016/j.jacc.2019.12.030. PMID: 32081280.

Abstract 
Background: Hypertrophic cardiomyopathy (HCM) is an uncommon but important cause of sudden cardiac death. 
Objectives: This study sought to develop an artificial intelligence approach for the detection of HCM based on 12-lead electrocardiography (ECG). 
Methods: A convolutional neural network (CNN) was trained and validated using digital 12-lead ECG from 2,448 patients with a verified HCM diagnosis and 51,153 non-HCM age- and sex-matched control subjects. The ability of the CNN to detect HCM was then tested on a different dataset of 612 HCM and 12,788 control subjects. 
Results: In the combined datasets, mean age was 54.8 ± 15.9 years for the HCM group and 57.5 ± 15.5 years for the control group. After training and validation, the area under the curve (AUC) of the CNN in the validation dataset was 0.95 (95% confidence interval [CI]: 0.94 to 0.97) at the optimal probability threshold of 11% for having HCM. When applying this probability threshold to the testing dataset, the CNN's AUC was 0.96 (95% CI: 0.95 to 0.96) with sensitivity 87% and specificity 90%. In subgroup analyses, the AUC was 0.95 (95% CI: 0.94 to 0.97) among patients with left ventricular hypertrophy by ECG criteria and 0.95 (95% CI: 0.90 to 1.00) among patients with a normal ECG. The model performed particularly well in younger patients (sensitivity 95%, specificity 92%). In patients with HCM with and without sarcomeric mutations, the model-derived median probabilities for having HCM were 97% and 96%, respectively. 
Conclusions: ECG-based detection of HCM by an artificial intelligence algorithm can be achieved with high diagnostic performance, particularly in younger patients. This model requires further refinement and external validation, but it may hold promise for HCM screening. 
Keywords: artificial intelligence; diagnostic performance; electrocardiogram; hypertrophic cardiomyopathy. 
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Hospital A data

32 310 patients who performed
echocardiograms within 4 weeks

124 patients were excluded
due to missing values

32 186 patients were included
- 1224 moderate to severe aortic stenosis patients

'

20% of patients were selected by
randomization for internal validation data

|

'

25 733 patients
for derivation data

6453 patients
for internal validation data

Hospital B data

10 902 patients who performed
echocardiograms within 4 weeks

37 patients were excluded
due to missing values

10 865 patients for external validation data
- 189 moderate to severe aortic stenosis patients

'

10 865 ECGs

for external validation

6453 ECGs
for internal validation

'

39 371 ECGs
for algorithm development

Accuracy test

using internal validation data

!

Development of

Artificial intelligence algorithm for

screening left ventricular systolic dysfunction using ECGs

A

Accuracy test
using external validation data



Předvádějící
Poznámky prezentace
Kwon JM, Lee SY, Jeon KH, et al. Deep Learning-Based Algorithm for Detecting Aortic Stenosis Using Electrocardiography. J Am Heart Assoc. 2020;9(7):e014717. doi:10.1161/JAHA.119.014717

Background Severe, symptomatic aortic stenosis (AS) is associated with poor prognoses. However, early detection of AS is difficult because of the long asymptomatic period experienced by many patients, during which screening tools are ineffective. The aim of this study was to develop and validate a deep learning-based algorithm, combining a multilayer perceptron and convolutional neural network, for detecting significant AS using ECGs. Methods and Results This retrospective cohort study included adult patients who had undergone both ECG and echocardiography. A deep learning-based algorithm was developed using 39 371 ECGs. Internal validation of the algorithm was performed with 6453 ECGs from one hospital, and external validation was performed with 10 865 ECGs from another hospital. The end point was significant AS (beyond moderate). We used demographic information, features, and 500-Hz, 12-lead ECG raw data as predictive variables. In addition, we identified which region had the most significant effect on the decision-making of the algorithm using a sensitivity map. During internal and external validation, the areas under the receiver operating characteristic curve of the deep learning-based algorithm using 12-lead ECG for detecting significant AS were 0.884 (95% CI, 0.880-0.887) and 0.861 (95% CI, 0.858-0.863), respectively; those using a single-lead ECG signal were 0.845 (95% CI, 0.841-0.848) and 0.821 (95% CI, 0.816-0.825), respectively. The sensitivity map showed the algorithm focused on the T wave of the precordial lead to determine the presence of significant AS. Conclusions The deep learning-based algorithm demonstrated high accuracy for significant AS detection using both 12-lead and single-lead ECGs. 


12-Lead ECG
for 10 seconds

60 000 numbers

12-Lead by 5000 number (500Hz)

2 66,69, 71, 65, 38,6,
V3 93,115, 120, 110, 76,
V4 123,129, 128, 81, 8,
V5 229, 229, 223, 192, 148,
V6 184, 188, 189, 187, 169, .

.33, -11, -46, -76

3-15,:-15,:-14;.-13

71, -143, -200, -234
. 99,48, 1,-37
, 140, 107, 76, 47

12-Lead ECG paper
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Deep Learning—Based Algorithm
for Detecting Aortic Stenosis Using
Electrocardiography

Demographic ECG features: Preprocessing of ECG raw data
Information: Heart rate, —Delete first and last Isecond Joon-Myoung Kwon, MD, MS*; Soo Youn Lee, MD, MS*; Ki-Hyun Jeon, MD, MS; Yeha Lee, PhD;

Age, Sex AFIB/AFL —Normalization at each data set Kyung-Hee Kim, MD, PhD; Jinsik Park, MD, PhD; Byung-Hee Oh, MD, PhD; Myong-Mook Lee, MD, PhD

We’ight ’ QT interval, —High and low frequency filter

Height, Body QRS duration,

mass index QTc, " ECG tidy data (4000,12,1)

R axis, T axis 3

VvV vy NRVRARA 2D convolution 64 Filter

Preprocessing and Normalization

Batch normalization

2D convolution 64 Filter

Batch normalization

Max pooling
A 4

2D convolution 64 Filter

Batch normalization

2D convolution 64 Filter N 6

Algoritmus Al a EKG

- Ensemble
(Deep neural network
+ Convolutional neural network)

Kwon JM et al. ] Am Heart Assoc. 2020;9(7):e014717. doi:10.1161/JAHA.119.014717
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Kwon JM, Lee SY, Jeon KH, et al. Deep Learning-Based Algorithm for Detecting Aortic Stenosis Using Electrocardiography. J Am Heart Assoc. 2020;9(7):e014717. doi:10.1161/JAHA.119.014717
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CNN (AUC=0.825)
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Random Forest (AUC=0.796)
Logstic regression (AUC=0.768)
Simple neural network (AUC=0.768)
Support vector machine (AUC=0.680)
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ROC krivka je graf, ktory popisuje
kvalitu binareho klasifikatora v
zavislosti na nastaveni jeho
klasifikacniho prahu.

Kwon JM et al. ] Am Heart Assoc. 2020;9(7):e014717. doi:10.1161/JAHA.119.014717



1,057,497 ECG-TTE pairs
(480,340individuals)

L

Excluded patients
+ Previous cardiad surgery - 8,021
* Imcomplete TTE report - 83,219
* Prosthetic valve - 6,774
* Pacemaker - 7,528
* > 1BD days interval between ECG-TTE - 90,780
« TTE - echocardiographer's disagreement - 13,242
* Inadequate ECG waveform - 12,169

The first valid pair was selected for CNN
258,607 patients

b

b

Training set (50%)
129,788

Validation set (10%)
25,803

l

Testing set (40%)
102,926

Eur Heart J, Volume 42, Issue 30, 7 August 2021, Pages 2885-2896, https://doi.org/10.1093/eurheartj/ehab153

The content of this slide may be subject to copyright: please see the slide notes for details.
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Illustrated Convolutional Neural Network to predict AS from ECG
We used DenseNet architecture with
62 convolutional layers and a fully connected output layer

o

Model AUC Sensitivity Specificity

102,926 patients 1 D D Lo
2 0.87 78.0% 79.8%
3 0.90 75.0% 88.0%

1: ECG only

2: ECG + Age & Sex
3: Model 2 for non-hypertensive patients
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12-lead ECG

Aortic Stenosis

> O Yes
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Al-ECG pre skrining
aortalnej stenozy
pomocou
konvolucnych

neuronalnych sieti
CNN

Eur Heart J, Volume 42, Issue 30, 7 August 2021, Pages 28852896, https://doi.org/10.1093/eurheartj/ehab153

The content of this slide may be subject to copyright: please see the slide notes for details.
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 AI-ECG for Aortic Stenosis screening using convolutional neural network (CNN).
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Illlustrated Convolutional Neural Network to predict AS from ECG
We used DenseNet architecture with
62 convelutional layers and a fully cannected output layer
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@ ESC European Heart Journal (2021) 00, 1-12 CLINICAL RESEARCH
European Society doi:10.1093/eurheartj/ehab153 Valvular heart disease
of Cardiology

Electrocardiogram screening for aortic valve
stenosis using artificial intelligence

Michal Cohen-Shelly ® ', Zachi I. Attia ® !, Paul A. Friedman', Saki Ito’,
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Positive predictive value was low at 10.5%, but
negative predictive value was 98.9%.
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Cohen-Shelly M, Attia ZI, Friedman PA, Ito S, Essayagh BA, Ko WY, Murphree DH, Michelena HI, Enriquez-Sarano M, Carter RE, Johnson PW, Noseworthy PA, Lopez-Jimenez F, Oh JK. Electrocardiogram screening for aortic valve stenosis using artificial intelligence. Eur Heart J. 2021 Mar 22:ehab153. doi: 10.1093/eurheartj/ehab153. Epub ahead of print. PMID: 33748852.

Long-term incidence of developing moderate or severe
aortic stenosis (AS) in patients with normal or mild AS at initial artificial
intelligence electrocardiogram (AI-ECG) classification. Longterm
outcome of patients with mild AS or without AS at the time of
initial classification by transthoracic echocardiography is shown. The
incidence of moderate or severe AS is shown and compared between
patients with false-positive (FP) results and those with truenegative
(TN) results stratified by the initial AI-ECG classification.
The estimated cumulative incidence is reported along the cumulative
incidence curve for each group at the times indicated along the
axis. Number at risk is also reported in the lower panel along with
the axis.


Abstract 
Aims: Early detection of aortic stenosis (AS) is becoming increasingly important with a better outcome after aortic valve replacement in asymptomatic severe AS patients and a poor outcome in moderate AS. We aimed to develop artificial intelligence-enabled electrocardiogram (AI-ECG) using a convolutional neural network to identify patients with moderate to severe AS. 
Methods and results: Between 1989 and 2019, 258 607 adults [mean age 63 ± 16.3 years; women 122 790 (48%)] with an echocardiography and an ECG performed within 180 days were identified from the Mayo Clinic database. Moderate to severe AS by echocardiography was present in 9723 (3.7%) patients. Artificial intelligence training was performed in 129 788 (50%), validation in 25 893 (10%), and testing in 102 926 (40%) randomly selected subjects. In the test group, the AI-ECG labelled 3833 (3.7%) patients as positive with the area under the curve (AUC) of 0.85. The sensitivity, specificity, and accuracy were 78%, 74%, and 74%, respectively. The sensitivity increased and the specificity decreased as age increased. Women had lower sensitivity but higher specificity compared with men at any age groups. The model performance increased when age and sex were added to the model (AUC 0.87), which further increased to 0.90 in patients without hypertension. Patients with false-positive AI-ECGs had twice the risk for developing moderate or severe AS in 15 years compared with true negative AI-ECGs (hazard ratio 2.18, 95% confidence interval 1.90-2.50). 
Conclusion: An AI-ECG can identify patients with moderate or severe AS and may serve as a powerful screening tool for AS in the community. 
Keywords: Aortic stenosis; Artificial intelligence; Convolutional neural network; ECG. 
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JAMA Cardiology | Original Investigation

Development and Validation of a Deep-Learning Model
to Screen for Hyperkalemia From the Electrocardiogram

Conner D. Galloway, MSc; Alexander V. Valys, BS; Jacqueline B. Shreibati, MD; Daniel L. Treiman, BS;
Frank L. Petterson, PhD; Vivek P. Gundotra; David E. Albert, MD; Zachi l. Attia, MSc; Rickey E. Carter, PhD;
Samuel J. Asirvatham, MD; Michael J. Ackerman, MD, PhD; Peter A. Noseworthy, MD;

John J. Dillon, MD; Paul A. Friedman, MD

Using 2 leads of an ECG acquired from patients
with chronic kidney disease, a DL detected
elevated potassium with an AUC of 0.853 to 0.883
and a sensitivity of 88.9% to 91.3%.

The application of Al to the ECG may enable
screening for hyperkalemia (HR for death with
hyperkalemia as high as 13!)




Al and personal data protection

Financial

Network

R

D |G'is? E;I‘EQD @nir |

Personal financial information are  Although health information should be kept secure,
already securely shared using it should be possible to share them similarly to

networks. financial information.

Goto S, Goto S. Circ Rep. 2019 Nov 2;1(11):481-486. doi: 10.1253/circrep.CR-19-0096



Al heralds a new era in expanding the role of ECG

* ECG is rich on relevant pathophysiologic information which remained
largely undiscovered

* Deep learning allows for identifying both “visible and invisible”
contents of the ECG.

* Two important advantages offered:
* compensate for lack of expertise in ECG interpetation by non-specialist

» detecting early stages of various disease processes incl. non-cardiac diseases
not discernable otherwise

* Potential to diagnose and predict
* later manifestatiob of the disease (aortic stenosis, AFIB, HCMP)

 disease with intermittent phenotype manifestation (paroxysmal arrhythmias)
* ECG as biomarker for systemic diseases (i.e. NPV for +SARS-CoV2 - 99% ...)



Al V KARDIOLOGII

Normal sinus rhythm Normal ECG
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Attia Z et al. Eur Heart J. 2021;ehab649. doi:10.1093/eurheartj/ehab649
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Attia ZI, Harmon DM, Behr ER, Friedman PA. Application of artificial intelligence to the electrocardiogram [published online ahead of print, 2021 Sep 17]. Eur Heart J. 2021;ehab649. doi:10.1093/eurheartj/ehab649

Artificial intelligence (AI) has given the electrocardiogram (ECG) and clinicians reading them super-human diagnostic abilities. Trained without hard-coded rules by finding often subclinical patterns in huge datasets, AI transforms the ECG, a ubiquitous, non-invasive cardiac test that is integrated into practice workflows, into a screening tool and predictor of cardiac and non-cardiac diseases, often in asymptomatic individuals. This review describes the mathematical background behind supervised AI algorithms, and discusses selected AI ECG cardiac screening algorithms including those for the detection of left ventricular dysfunction, episodic atrial fibrillation from a tracing recorded during normal sinus rhythm, and other structural and valvular diseases. The ability to learn from big data sets, without the need to understand the biological mechanism, has created opportunities for detecting non-cardiac diseases as COVID-19 and introduced challenges with regards to data privacy. Like all medical tests, the AI ECG must be carefully vetted and validated in real-world clinical environments. Finally, with mobile form factors that allow acquisition of medical-grade ECGs from smartphones and wearables, the use of AI may enable massive scalability to democratize healthcare. 


Umela inteligencia (Al) a EKG

* Al otvara pre EKG netuseny, v podstate nadludsky potencial
pre diagnostiku KV ochoreni

* Schopnost ucit sa z obrovského objemu dat (bez potreby
sucasnej znalosti ich biologickych mechanizmov) vytvara
moznost diagnostikovat aj nekardialne ochorenia /cirhdza
pecene, COVID-19,...)

* \Vzhladom k Sirokej dostupnosti EKG a jeho ziskania pomocou
“nositelnych! senzorov (“wearables”) moze byt Al cestou k
“demokratizacii” - t.j. univerzalnej pristupnosti pokrocilej
kardiovaskularnej mediciny
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A little learning is a dangerous thing;
drink deep, or taste not the Pierian
spring:

there shallow draughts intoxicate the
brain,

and drinking largely sobers us again.

Alexander Pope
"An Essay on Criticism", (1709)



DAKUJEM




THANK YOU FOR YOUR TIME AND
ATTENTION !



	Elektrokardiogram a umelá inteligencia
	Snímek číslo 2
	Willem Einthoven and Thomas Lewis�Leiden, April 10th 1921
	120 years of electrocardiography
	EKG - bohatý zdroj fyziologických informácií, �ktoré reflektujú stav srdca i iných systémov
	Aims to eliminate the varability of  ECG interpretation are not new
	Snímek číslo 7
	Computers for ECG interpretation
	Snímek číslo 9
	Snímek číslo 10
	SVET UMELEJ INTELIGENCIE
	Snímek číslo 12
	Artificial intelligence
	ECG = ideal target �for applying AI and deep learning
	STROJOVÉ UČENIE (MACHINE LEARNING)
	Umelá inteligencia v elektrokardiografii
	Snímek číslo 17
	Snímek číslo 18
	Umelá inteligencia v elektrokardiografii
	ELEKTRICKÉ OCHORENIA SRDCA
	Snímek číslo 21
	Snímek číslo 22
	Snímek číslo 23
	Snímek číslo 24
	Snímek číslo 25
	Snímek číslo 26
	Snímek číslo 27
	Snímek číslo 28
	Snímek číslo 29
	Profil významnosti jednotlivých charakteristík pre identifikáciu ekg stopy sotalolu  (feature importance profile)
	Mapa senzitivity pre určenie ekg segmentu rozhodujúceho pre dg. aortálnej stenózy
	Snímek číslo 32
	DYSFUNKCIA ĽAVEJ KOMORY
	Snímek číslo 34
	Snímek číslo 35
	Konvolučná neuronálna sieť (CNN) s “učením pod dohľadom” (supervised learning)
	Snímek číslo 37
	Snímek číslo 38
	Snímek číslo 39
	Snímek číslo 40
	ŠTRUKTURÁLNE OCHORENIA SRDCA
	Snímek číslo 42
	Snímek číslo 43
	Snímek číslo 44
	AORTIC STENOSIS
	Snímek číslo 46
	Algoritmus AI a EKG
	Výkon algoritmu AI pre detekciu aortálnej stenózy
	Snímek číslo 49
	AI-ECG pre skríning �aortálnej stenózy  pomocou konvolučných neuronálnych sietí (CNN)
	Snímek číslo 51
	NEKARDIÁLNE OCHORENIA
	Snímek číslo 53
	Snímek číslo 54
	AI heralds a new era in expanding the role of ECG
	AI V KARDIOLÓGII
	Umelá inteligencia (AI) a EKG
	Snímek číslo 58
	Snímek číslo 59
	Snímek číslo 60

