Endokardiální bezdrátová stimulace LK u nemocných indikovaných k CRT:

multicentrická ověřovací studie - 12 měsíční sledování

P. Neuzil¹, P. Šedivý¹, L.Šedivá¹, T. Mráz¹, V Y. Reddy², S. Riahi³, C. Butter⁴, PP. Delnoy⁵, L. Van Erven⁶, M. Schalij⁶, L. Boersma⁷

 Na Homolce Hospital, Prague, Czech Republic; (2) Mount Sinai School of Medicine, Cardiology, New York, USA; (3) Aalborg University Hospital, Cardiology, Aalborg, Denmark; (4) Brandenburg Heart Center, Bernau Bei Berlin, Germany;
 Isala Clinics, Zwolle, Netherlands; (6) Leiden University Medical Center, Leiden, Netherlands; (7) St Antonius Hospital, Nieuwegein, Netherlands

Deklarace konfliktu zájmů

Výzkumný grant/konzultant:

- •EBR Inc.
- St Jude Medical Inc.
- Medtronic Inc.
- Boston Scientific Inc.

Why We Need to Propose Endocardial LV Pacing ?

- 90-98% success rate with CS epicardial LV pacing but there are still implantation failures despite major improvements in the technology (Failure of LV lead implantation (7%)¹
- Limitation due to the CS anatomy (small veins, tortuous veins, valves....)
- Limitation due to LV lead implantation complications
 - CS dissection (1.3%)¹ coronary vein perforation (1.3%)¹
 - High pacing threshold (acute and chronic)
 - Phrenic nerve stimulation (short and long terms)
 - LV lead dislodgement (short and long terms) (5.7%)¹
 - Epicardial or non optimal pacing site —> non response to CRT
 - X-rays exposure (patient, physician and staff)
 - In hospital-Death $(0.3\%)^{1}$, 30-days mortality $(0.7\%)^{1}$

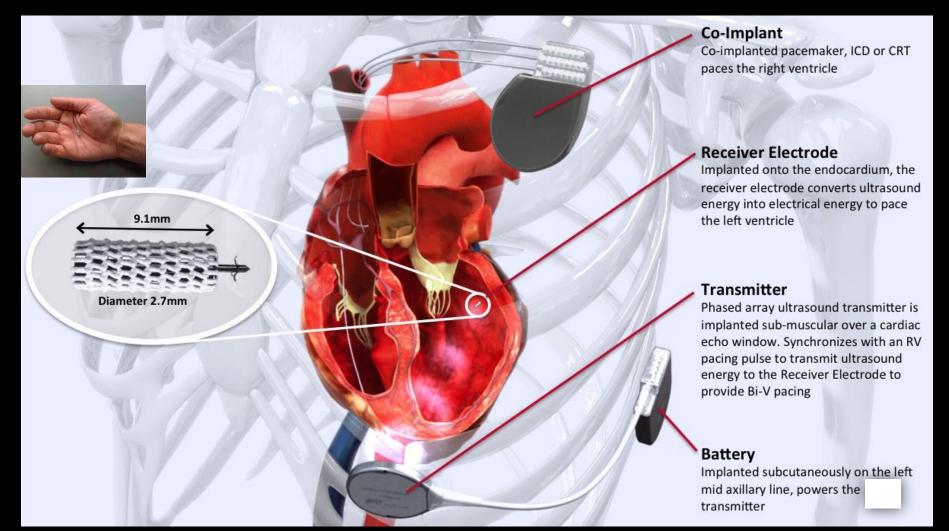
¹ Van Rees. J Am Coll Cardiol 2011; 58: 995-1000

Endocardial LV Pacing Benefits vs. Epicardial CS Pacing

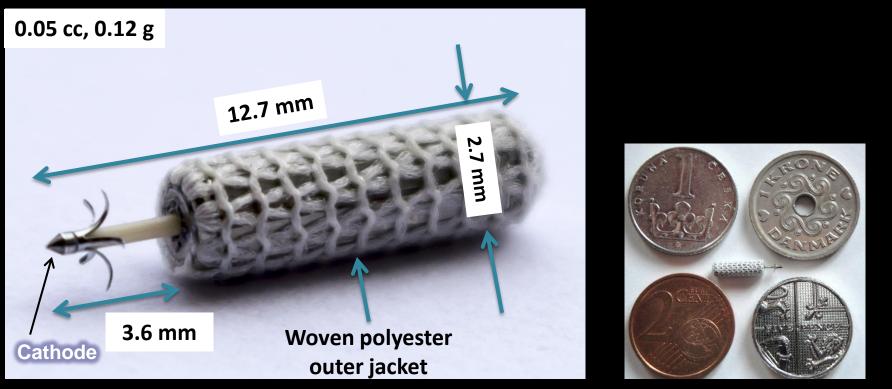
- No venous branch variability
- Flexibility in LV pacing site selection
- Lower capture thresholds
- No phrenic nerve stimulation
- Improved stability
- More rapid activation of the LV myocardium
 - Physiological activation from endo- to epicardium
- Shorter QRS duration
- Improved haemodynamics

Bordachar P et al: J Am Coll Cardiol. 2010; 56: 747-753.

IMPROVES OUTCOME


ADDRESSES COMPLICATIONS

EFFICIENT


IMPLANT

WiSE CRT System

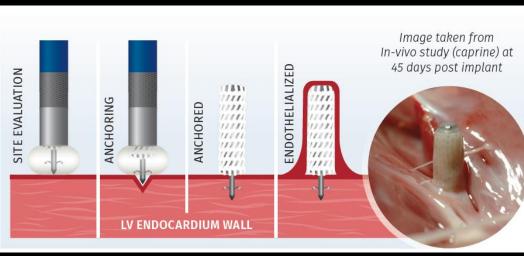
 Wireless, left ventricular, endocardial pacing system as alternative to conventional epicardial CS pacing

WiSE CRT System Electrode

- Attached to LV endocardium with 5 barb fixation anchor
- Woven polyester outer jacket
 - Enhanced endothelialisation
 - Minimised risk of thromboembolic events

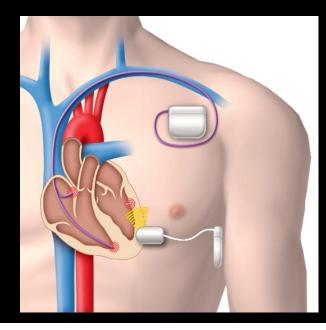
WiSE CRT System Electrode

Small Size

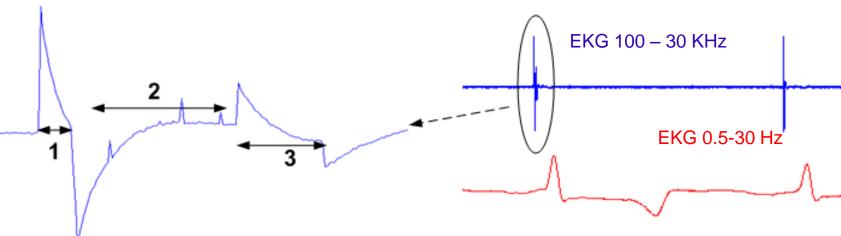

Designed for LV placement LENGTH OF BODY: 9.1mm DIAMETER: 2.7mm while avoiding need WEIGHT: 0.12 g for chronic anticoagulation VOLUME: 0.05 cc

Secure Attachment

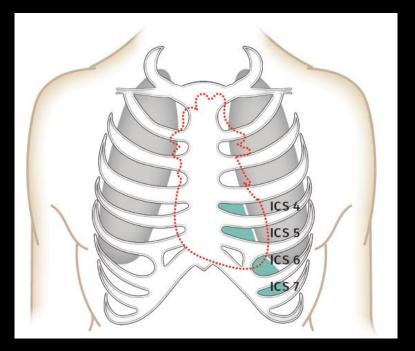
Endothelialises for a low risk of thromboembolic events


- Anchors onto endocardial wall with 5 nitinol tines
- Passive device with no need for replacement
- Full endothelialisation in animal testing at 30 to 45 days ¹¹

11111 1111 LV ENDOCARDIUM WALL


Echt DS, Moore D, Cowan M, Valli VE, Whitehair JG, Willis NP. Heart Rhythm 2010; S451-2.

WiSE-LV System Synchronization & Timing for CRT



1. Detect Co-implant RV output

- Pacemaker, ICD, or CRT
- Pulse-width measured to discriminate RV vs. RA
- 2. Locate/Target Electrode "search"
 - 16 µs ultrasound pulses
 - sensed amplitude response discriminates
 position
- 3. Send pacing energy
 - Programmable PW 0.1-2.0ms and Transmit level
 - Typically 3ms after RV pulse, max ~12ms

Transthoracic Echocardiography: Examples of acustic window detection

Transmitter is most commonly placed in a patient's 6th intercostal space (ICS)

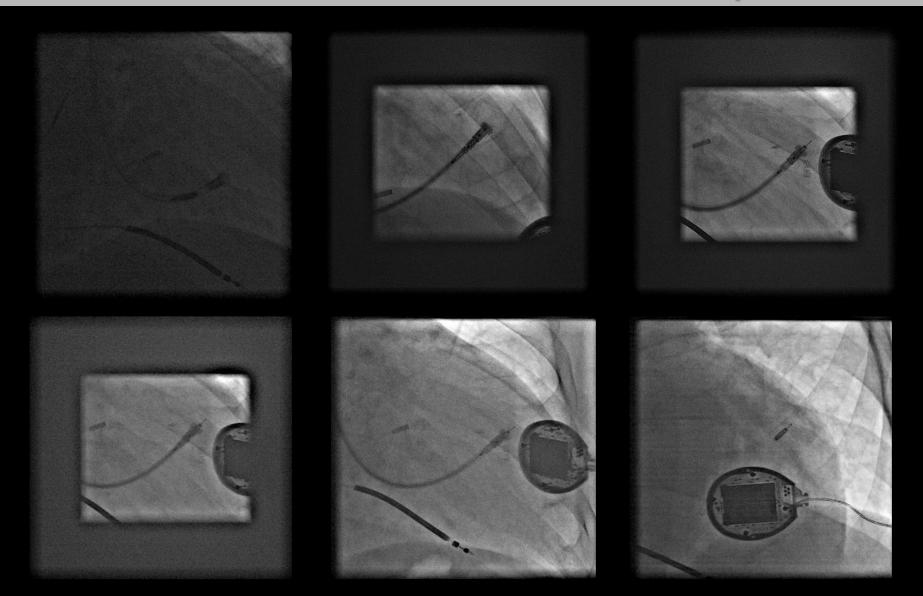
- Identify optimal transmitter position, acoustic window, AW
 - Assess intercostal space 4-7 with TTE
 - Ensure no lung or rib obstruction preventing ultrasound transmission to potential receiver electrode site
 - Minimum 1 x 3.5cm window
- Additional assessment of:
 - LV wall thickness
 - Areas of ischemia
 - Potential electrode placement


Transthoracic Echocardiography: Examples of acustic window detection

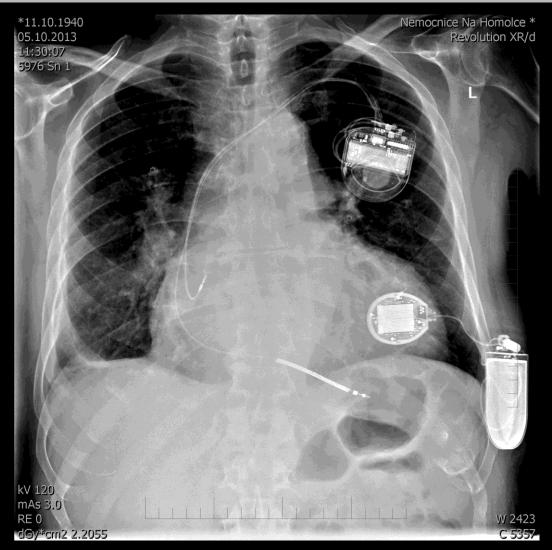
PHILIPS

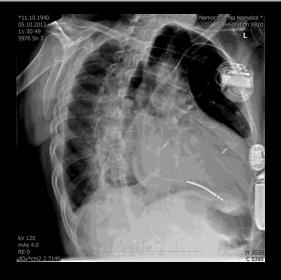
WiSE – Transmitter and Battery Surgical Part of the Procedure

WiSE – Transmitter and Battery Surgical Part of the Procedure

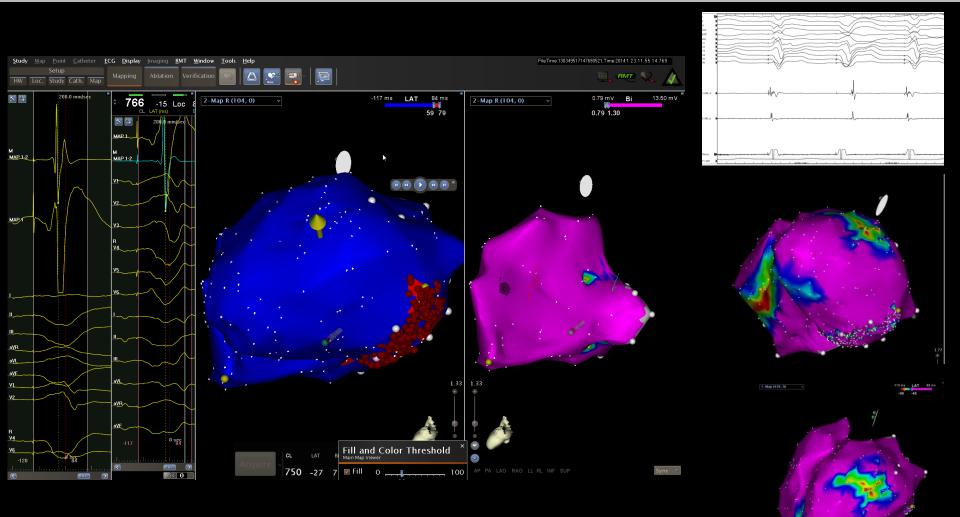

WiSE – LV Lead Delivery System

Designed for Safety


- Innovative inflatable polyester balloon
 - Atraumatic tip
- Radiopaque markers
 - Clear visualisation of position
- Direct connection of the cathode tip to EP recording systems
 - Analysis of EGM signals, pacing & threshold testing



LV Electrode Percutaneous Transaortic Implantation


WiSE – System Insertion Fluoroscopy in Different Projections

CARTO Electroanatomical Mapping 8 months after Implantation

SELECT-LV Study Centres and Investigators

Centre	Investigators
Na Homolce Hospital,	Professor Petr Neuzil
Prague, Czech Republic	Dr. Vivek Reddy
Aalborg University Hospital,	Dr. Sam Riahi
Aalborg, Denmark	Professor Peter Søgaard
Isala Ziekenhuis, Zwolle, Netherlands	Dr. Peter Paul Delnoy
Heart Center,	Dr. Christian Butter
Bernau bei Berlin, Germany	Dr. Martin Seifert
LUMC,	Dr. Lieselot van Erven
Leiden, Netherlands	Professor Martin Schalij
St. Antonius Ziekenhuis, Nieuwegein, Netherlands	Dr. Lucas Boersma

SELECT-LV Study Results

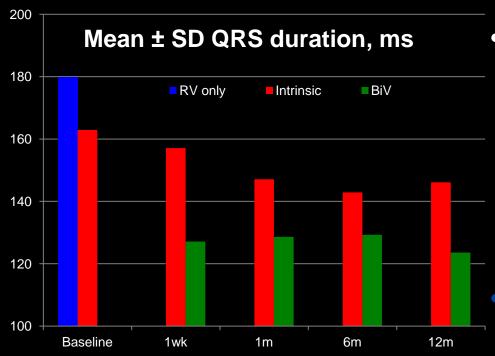
- 39 pts completed enrollment and screening
 - 3 pts failed acoustic window screening
 - 1 pt withdrew consent

34 (97.1%) of 35 attempted implants successful

25 pts followed for >12m

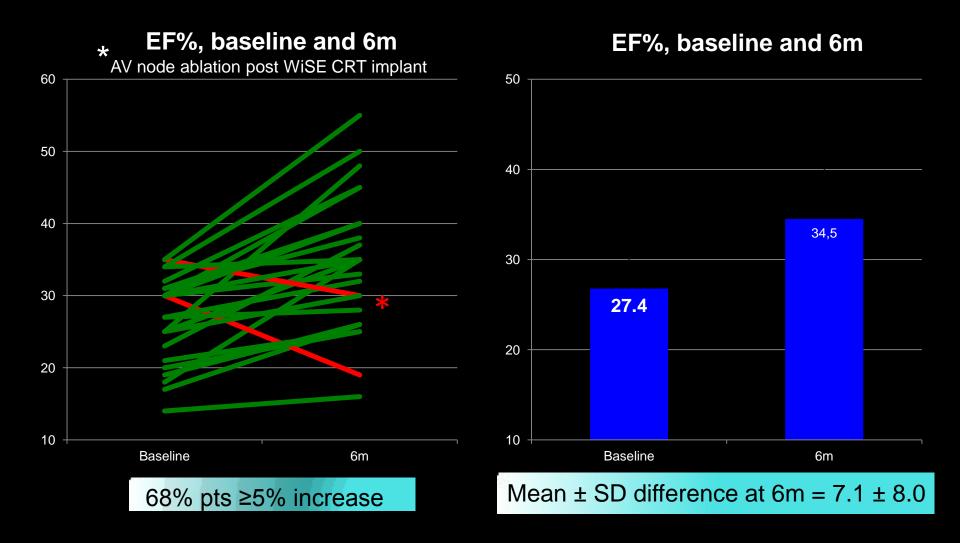
SELECT-LV pts reaching12m: Demographics

Demographics	Mean ± SD
Age, years	65.8 ± 8.6
BMI	29.7 ± 4.8
Ejection fraction,%	27.4 ± 5.4
NYHA	2.7 ± 0.6
Intrinsic pre-imp QRS duration, ms	163 ± 32
Gender, male	
ICM / NICM / Both	10 (40%) / 12 (48%) / 3 (12%)
Untreated / Non responder / Upgrade	19 (76%) / 4 (16%) / 2 (8%)
Pts with anticoagulant pre-implant	13 (52%)
Implant duration, days	571 ± 136


SELECT-LV pts reaching12m: Clinical Events

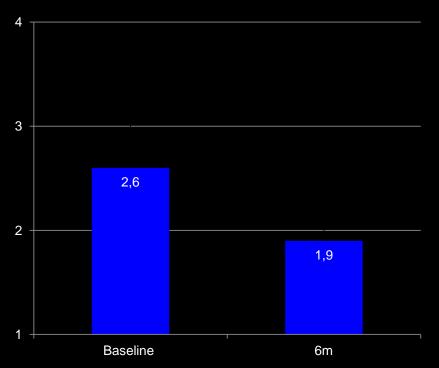
Clinical events		
Suspected infection	(3 patients)	
Haematoma at pulse generator pocket		
Acute CVA - pt not compliant with anticoagulant regimen		
Pseudo aneurysm		
Heart failure hospitalisation	(Repeated in 1 patient)	
Death, heart failure	(2 patients)	
Premature battery depletion	(2 patients)	
Arrhythmic storm	(2 patients)	
VF and adequate ICD therapy		

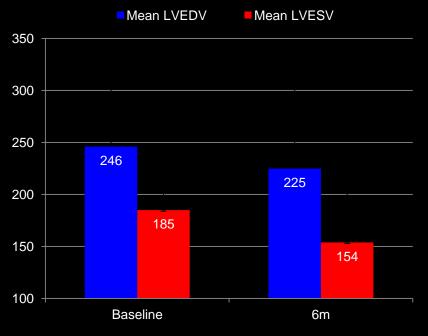
- No cardiac perforation
- No electrode dislodgments


SELECT-LV pts reaching12m: Performance - BiV Pacing

BiV pacing capture on 12 lead ECG at 1, 6 and 12m – 100%, 97% and 96% of evaluable pts

- Mean BiV QRS reduced at 1, 6 and 12m vs:
 - Baseline RV:
 - 51, 51 and 56 ms
 - Intrinsic:
 - 34, 34 and 39 ms
 - Intrinsic QRS reduced over the time


SELECT-LV pts reaching12m: Preliminary Efficacy


SELECT-LV pts reaching12m: Preliminary Efficacy

NYHA, Baseline and 6m

End systolic and diastolic volumes, ml, baseline and 6m

52% pts \geq 1 class improvement

53% pts ≥15% improvement in LVESV

SELECT-LV pts reaching12m: Preliminary Efficacy - Clinical Composite Score

- 25 pts to date followed for 12m study duration
 - No pts died within study period
 - 1 pt hospitalised for HF on 2 occasions
 - NYHA mean \pm SD decrease from 2.7 \pm 0.6 \rightarrow 1.8 \pm 0.7
 - Pt global assessment:

Packer M et al., J Cardiac Failure 2001; 7: 176-182.

SELECT-LV pts reaching12m: Conclusion

- WiSE CRT shows promising efficacy in pts unable to benefit from conventional CRT, non responders / upgrades
- Multi-centre experience in a small number of pts has demonstrated feasibility, utility and long term outcome of endocardial LV pacing to achieve CRT
 - BiV pacing achieved in 100, 100, 97 and 96% of pts at 1 week, 1, 6 and 12m
 - Mean BiV QRS duration reduced by 1 week and maintained at 12m
 - Intrinsic QRS duration reduced, demonstrating electrical reverse remodelling
 - Mean LV EF increased
 - Mean NYHA reduced
 - Mean end systolic / diastolic volumes reduced
 - Clinical composite score improved

SELECT-LV pts reaching12m: Conclusion

- Chronic anticoagulation is not required
- Post-market surveillance registry underway for WiSE CRT
 - Consolidated experience in clinical practice, not clinical study
 - Site selection strategies for electrode investigated
- Improvement in battery longevity by
 - Programming
 - Transmitter development
 - Electrode development
 - Battery development